Remove multiplier-free version since we don't need it
This commit is contained in:
parent
e4475871fb
commit
c35883d74b
2 changed files with 0 additions and 446 deletions
|
@ -1,271 +0,0 @@
|
||||||
#include <stddef.h>
|
|
||||||
#include "entdec.h"
|
|
||||||
#include "mfrngcod.h"
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
/*A multiply-free range decoder.
|
|
||||||
This is an entropy decoder based upon \cite{Mar79}, which is itself a
|
|
||||||
rediscovery of the FIFO arithmetic code introduced by \cite{Pas76}.
|
|
||||||
It is very similar to arithmetic encoding, except that encoding is done with
|
|
||||||
digits in any base, instead of with bits, and so it is faster when using
|
|
||||||
larger bases (i.e.: a byte).
|
|
||||||
The author claims an average waste of $\frac{1}{2}\log_b(2b)$ bits, where $b$
|
|
||||||
is the base, longer than the theoretical optimum, but to my knowledge there
|
|
||||||
is no published justification for this claim.
|
|
||||||
This only seems true when using near-infinite precision arithmetic so that
|
|
||||||
the process is carried out with no rounding errors.
|
|
||||||
|
|
||||||
IBM (the author's employer) never sought to patent the idea, and to my
|
|
||||||
knowledge the algorithm is unencumbered by any patents, though its
|
|
||||||
performance is very competitive with proprietary arithmetic coding.
|
|
||||||
The two are based on very similar ideas, however.
|
|
||||||
An excellent description of implementation details is available at
|
|
||||||
http://www.arturocampos.com/ac_range.html
|
|
||||||
A recent work \cite{MNW98} which proposes several changes to arithmetic
|
|
||||||
encoding for efficiency actually re-discovers many of the principles
|
|
||||||
behind range encoding, and presents a good theoretical analysis of them.
|
|
||||||
|
|
||||||
The coder is made multiply-free by replacing the standard multiply/divide
|
|
||||||
used to partition the current interval according to the total frequency
|
|
||||||
count.
|
|
||||||
The new partition function scales the count so that it differs from the size
|
|
||||||
of the interval by no more than a factor of two and then assigns each symbol
|
|
||||||
one or two code words in the interval.
|
|
||||||
For details see \cite{SM98}.
|
|
||||||
|
|
||||||
This coder also handles the end of the stream in a slightly more graceful
|
|
||||||
fashion than most arithmetic or range coders.
|
|
||||||
Once the final symbol has been encoded, the coder selects the code word with
|
|
||||||
the shortest number of bits that still falls within the final interval.
|
|
||||||
This method is not novel.
|
|
||||||
Here, by the length of the code word, we refer to the number of bits until
|
|
||||||
its final 1.
|
|
||||||
Any trailing zeros may be discarded, since the encoder, once it runs out of
|
|
||||||
input, will pad its buffer with zeros.
|
|
||||||
|
|
||||||
But this means that no encoded stream would ever have any zero bytes at the
|
|
||||||
end.
|
|
||||||
Since there are some coded representations we cannot produce, it implies that
|
|
||||||
there is still some redundancy in the stream.
|
|
||||||
In this case, we can pick a special byte value, RSV1, and should the stream
|
|
||||||
end in a sequence of zeros, followed by the RSV1 byte, we can code the
|
|
||||||
zeros, and discard the RSV1 byte.
|
|
||||||
The decoder, knowing that the encoder would never produce a sequence of zeros
|
|
||||||
at the end, would then know to add in the RSV1 byte if it observed it.
|
|
||||||
|
|
||||||
Now, the encoder would never produce a stream that ended in a sequence of
|
|
||||||
zeros followed by a RSV1 byte.
|
|
||||||
So, if the stream ends in a non-empty sequence of zeros, followed by any
|
|
||||||
positive number of RSV1 bytes, the last RSV1 byte is discarded.
|
|
||||||
The decoder, if it encounters a stream that ends in non-empty sequence of
|
|
||||||
zeros followed by any non-negative number of RSV1 bytes, adds an additional
|
|
||||||
RSV1 byte to the stream.
|
|
||||||
With this strategy, every possible sequence of input bytes is transformed to
|
|
||||||
one that could actually be produced by the encoder.
|
|
||||||
|
|
||||||
The only question is what non-zero value to use for RSV1.
|
|
||||||
We select 0x80, since it has the nice property of producing the shortest
|
|
||||||
possible byte streams when using our strategy for selecting a number within
|
|
||||||
the final interval to encode.
|
|
||||||
Clearly if the shortest possible code word that falls within the interval has
|
|
||||||
its last one bit as the most significant bit of the final byte, and the
|
|
||||||
previous bytes were a non-empty sequence of zeros followed by a non-negative
|
|
||||||
number of 0x80 bytes, then the last byte would be discarded.
|
|
||||||
If the shortest code word is not so formed, then no other code word in the
|
|
||||||
interval would result in any more bytes being discarded.
|
|
||||||
Any longer code word would have an additional one bit somewhere, and so would
|
|
||||||
require at a minimum that that byte would be coded.
|
|
||||||
If the shortest code word has a 1 before the final one that is preventing the
|
|
||||||
stream from ending in a non-empty sequence of zeros followed by a
|
|
||||||
non-negative number of 0x80's, then there is no code word of the same length
|
|
||||||
which contains that bit as a zero.
|
|
||||||
If there were, then we could simply leave that bit a 1, and drop all the bits
|
|
||||||
after it without leaving the interval, thus producing a shorter code word.
|
|
||||||
|
|
||||||
In this case, RSV1 can only drop 1 bit off the final stream.
|
|
||||||
Other choices could lead to savings of up to 8 bits for particular streams,
|
|
||||||
but this would produce the odd situation that a stream with more non-zero
|
|
||||||
bits is actually encoded in fewer bytes.
|
|
||||||
|
|
||||||
@PHDTHESIS{Pas76,
|
|
||||||
author="Richard Clark Pasco",
|
|
||||||
title="Source coding algorithms for fast data compression",
|
|
||||||
school="Dept. of Electrical Engineering, Stanford University",
|
|
||||||
address="Stanford, CA",
|
|
||||||
month=May,
|
|
||||||
year=1976
|
|
||||||
}
|
|
||||||
@INPROCEEDINGS{Mar79,
|
|
||||||
author="Martin, G.N.N.",
|
|
||||||
title="Range encoding: an algorithm for removing redundancy from a digitised
|
|
||||||
message",
|
|
||||||
booktitle="Video & Data Recording Conference",
|
|
||||||
year=1979,
|
|
||||||
address="Southampton",
|
|
||||||
month=Jul
|
|
||||||
}
|
|
||||||
@ARTICLE{MNW98,
|
|
||||||
author="Alistair Moffat and Radford Neal and Ian H. Witten",
|
|
||||||
title="Arithmetic Coding Revisited",
|
|
||||||
journal="{ACM} Transactions on Information Systems",
|
|
||||||
year=1998,
|
|
||||||
volume=16,
|
|
||||||
number=3,
|
|
||||||
pages="256--294",
|
|
||||||
month=Jul,
|
|
||||||
URL="http://www.stanford.edu/class/ee398/handouts/papers/Moffat98ArithmCoding.pdf"
|
|
||||||
}
|
|
||||||
@INPROCEEDINGS{SM98,
|
|
||||||
author="Lang Stuiver and Alistair Moffat",
|
|
||||||
title="Piecewise Integer Mapping for Arithmetic Coding",
|
|
||||||
booktitle="Proceedings of the {IEEE} Data Compression Conference",
|
|
||||||
pages="1--10",
|
|
||||||
address="Snowbird, UT",
|
|
||||||
month="Mar./Apr.",
|
|
||||||
year=1998
|
|
||||||
}*/
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
/*Gets the next byte of input.
|
|
||||||
After all the bytes in the current packet have been consumed, and the extra
|
|
||||||
end code returned if needed, this function will continue to return zero each
|
|
||||||
time it is called.
|
|
||||||
Return: The next byte of input.*/
|
|
||||||
static int ec_dec_in(ec_dec *_this){
|
|
||||||
int ret;
|
|
||||||
ret=ec_byte_read1(_this->buf);
|
|
||||||
if(ret<0){
|
|
||||||
ret=0;
|
|
||||||
/*Needed to make sure the above conditional only triggers once, and to keep
|
|
||||||
oc_dec_tell() operating correctly.*/
|
|
||||||
ec_byte_adv1(_this->buf);
|
|
||||||
}
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
|
|
||||||
/*Normalizes the contents of dif and rng so that rng lies entirely in the
|
|
||||||
high-order symbol.*/
|
|
||||||
static void ec_dec_normalize(ec_dec *_this){
|
|
||||||
/*If the range is too small, rescale it and input some bits.*/
|
|
||||||
while(_this->rng<=EC_CODE_BOT){
|
|
||||||
int sym;
|
|
||||||
_this->rng<<=EC_SYM_BITS;
|
|
||||||
/*Use up the remaining bits from our last symbol.*/
|
|
||||||
sym=_this->rem<<EC_CODE_EXTRA&EC_SYM_MAX;
|
|
||||||
/*Read the next value from the input.*/
|
|
||||||
_this->rem=ec_dec_in(_this);
|
|
||||||
/*Take the rest of the bits we need from this new symbol.*/
|
|
||||||
sym|=_this->rem>>EC_SYM_BITS-EC_CODE_EXTRA;
|
|
||||||
_this->dif=(_this->dif<<EC_SYM_BITS)+sym&EC_CODE_MASK;
|
|
||||||
/*dif can never be larger than EC_CODE_TOP.
|
|
||||||
This is equivalent to the slightly more readable:
|
|
||||||
if(_this->dif>EC_CODE_TOP)_this->dif-=EC_CODE_TOP;*/
|
|
||||||
_this->dif^=_this->dif&_this->dif-1&EC_CODE_TOP;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void ec_dec_init(ec_dec *_this,ec_byte_buffer *_buf){
|
|
||||||
_this->buf=_buf;
|
|
||||||
_this->rem=ec_dec_in(_this);
|
|
||||||
_this->rng=1U<<EC_CODE_EXTRA;
|
|
||||||
_this->dif=_this->rem>>EC_SYM_BITS-EC_CODE_EXTRA;
|
|
||||||
/*Normalize the interval.*/
|
|
||||||
ec_dec_normalize(_this);
|
|
||||||
}
|
|
||||||
|
|
||||||
unsigned ec_decode(ec_dec *_this,unsigned _ft){
|
|
||||||
unsigned d;
|
|
||||||
/*Step 1: Compute the normalization factor for the frequency counts.*/
|
|
||||||
_this->nrm=EC_ILOG(_this->rng)-EC_ILOG(_ft);
|
|
||||||
_ft<<=_this->nrm;
|
|
||||||
d=_ft>_this->rng;
|
|
||||||
_ft>>=d;
|
|
||||||
_this->nrm-=d;
|
|
||||||
/*Step 2: invert the partition function.*/
|
|
||||||
d=_this->rng-_ft;
|
|
||||||
return EC_MAXI((int)(_this->dif>>1),(int)(_this->dif-d))>>_this->nrm;
|
|
||||||
/*Step 3: The caller locates the range [fl,fh) containing the return value
|
|
||||||
and calls ec_dec_update().*/
|
|
||||||
}
|
|
||||||
|
|
||||||
void ec_dec_update(ec_dec *_this,unsigned _fl,unsigned _fh,unsigned _ft){
|
|
||||||
unsigned r;
|
|
||||||
unsigned s;
|
|
||||||
unsigned d;
|
|
||||||
/*Step 4: Evaluate the two partition function values.*/
|
|
||||||
_fl<<=_this->nrm;
|
|
||||||
_fh<<=_this->nrm;
|
|
||||||
_ft<<=_this->nrm;
|
|
||||||
d=_this->rng-_ft;
|
|
||||||
r=_fh+EC_MINI(_fh,d);
|
|
||||||
s=_fl+EC_MINI(_fl,d);
|
|
||||||
/*Step 5: Update the interval.*/
|
|
||||||
_this->rng=r-s;
|
|
||||||
_this->dif-=s;
|
|
||||||
/*Step 6: Normalize the interval.*/
|
|
||||||
ec_dec_normalize(_this);
|
|
||||||
}
|
|
||||||
|
|
||||||
long ec_dec_tell(ec_dec *_this,int _b){
|
|
||||||
ec_uint32 r;
|
|
||||||
int l;
|
|
||||||
long nbits;
|
|
||||||
nbits=ec_byte_bytes(_this->buf)-(EC_CODE_BITS+EC_SYM_BITS-1)/EC_SYM_BITS<<3;
|
|
||||||
/*To handle the non-integral number of bits still left in the encoder state,
|
|
||||||
we compute the number of bits of low that must be encoded to ensure that
|
|
||||||
the value is inside the range for any possible subsequent bits.
|
|
||||||
Note that this is subtly different than the actual value we would end the
|
|
||||||
stream with, which tries to make as many of the trailing bits zeros as
|
|
||||||
possible.*/
|
|
||||||
nbits+=EC_CODE_BITS;
|
|
||||||
nbits<<=_b;
|
|
||||||
l=EC_ILOG(_this->rng);
|
|
||||||
r=_this->rng>>l-16;
|
|
||||||
while(_b-->0){
|
|
||||||
int b;
|
|
||||||
r=r*r>>15;
|
|
||||||
b=(int)(r>>16);
|
|
||||||
l=l<<1|b;
|
|
||||||
r>>=b;
|
|
||||||
}
|
|
||||||
return nbits-l;
|
|
||||||
}
|
|
||||||
|
|
||||||
#if 0
|
|
||||||
int ec_dec_done(ec_dec *_this){
|
|
||||||
unsigned low;
|
|
||||||
int ret;
|
|
||||||
/*Check to make sure we've used all the input bytes.
|
|
||||||
This ensures that no more ones would ever be inserted into the decoder.*/
|
|
||||||
if(_this->buf->ptr-ec_byte_get_buffer(_this->buf)<=
|
|
||||||
ec_byte_bytes(_this->buf)){
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
/*We compute the smallest finitely odd fraction that fits inside the current
|
|
||||||
range, and write that to the stream.
|
|
||||||
This is guaranteed to yield the smallest possible encoding.*/
|
|
||||||
/*TODO: Fix this line, as it is wrong.
|
|
||||||
It doesn't seem worth being able to make this check to do an extra
|
|
||||||
subtraction for every symbol decoded.*/
|
|
||||||
low=/*What we want: _this->top-_this->rng; What we have:*/_this->dif
|
|
||||||
if(low){
|
|
||||||
unsigned end;
|
|
||||||
end=EC_CODE_TOP;
|
|
||||||
/*Ensure that the next free end is in the range.*/
|
|
||||||
if(end-low>=_this->rng){
|
|
||||||
unsigned msk;
|
|
||||||
msk=EC_CODE_TOP-1;
|
|
||||||
do{
|
|
||||||
msk>>=1;
|
|
||||||
end=low+msk&~msk|msk+1;
|
|
||||||
}
|
|
||||||
while(end-low>=_this->rng);
|
|
||||||
}
|
|
||||||
/*The remaining input should have been the next free end.*/
|
|
||||||
return end-low!=_this->dif;
|
|
||||||
}
|
|
||||||
return 1;
|
|
||||||
}
|
|
||||||
#endif
|
|
|
@ -1,175 +0,0 @@
|
||||||
#include <stddef.h>
|
|
||||||
#include "entenc.h"
|
|
||||||
#include "mfrngcod.h"
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
/*A multiply-free range encoder.
|
|
||||||
See mfrngdec.c and the references for implementation details
|
|
||||||
\cite{Mar79,MNW98,SM98}.
|
|
||||||
|
|
||||||
@INPROCEEDINGS{Mar79,
|
|
||||||
author="Martin, G.N.N.",
|
|
||||||
title="Range encoding: an algorithm for removing redundancy from a digitised
|
|
||||||
message",
|
|
||||||
booktitle="Video \& Data Recording Conference",
|
|
||||||
year=1979,
|
|
||||||
address="Southampton",
|
|
||||||
month=Jul
|
|
||||||
}
|
|
||||||
@ARTICLE{MNW98,
|
|
||||||
author="Alistair Moffat and Radford Neal and Ian H. Witten",
|
|
||||||
title="Arithmetic Coding Revisited",
|
|
||||||
journal="{ACM} Transactions on Information Systems",
|
|
||||||
year=1998,
|
|
||||||
volume=16,
|
|
||||||
number=3,
|
|
||||||
pages="256--294",
|
|
||||||
month=Jul,
|
|
||||||
URL="http://www.stanford.edu/class/ee398/handouts/papers/Moffat98ArithmCoding.pdf"
|
|
||||||
}
|
|
||||||
@INPROCEEDINGS{SM98,
|
|
||||||
author="Lang Stuiver and Alistair Moffat",
|
|
||||||
title="Piecewise Integer Mapping for Arithmetic Coding",
|
|
||||||
booktitle="Proceedings of the {IEEE} Data Compression Conference",
|
|
||||||
pages="1--10",
|
|
||||||
address="Snowbird, UT",
|
|
||||||
month="Mar./Apr.",
|
|
||||||
year=1998
|
|
||||||
}*/
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
/*Outputs a symbol, with a carry bit.
|
|
||||||
If there is a potential to propagate a carry over several symbols, they are
|
|
||||||
buffered until it can be determined whether or not an actual carry will
|
|
||||||
occur.
|
|
||||||
If the counter for the buffered symbols overflows, then the stream becomes
|
|
||||||
undecodable.
|
|
||||||
This gives a theoretical limit of a few billion symbols in a single packet on
|
|
||||||
32-bit systems.
|
|
||||||
The alternative is to truncate the range in order to force a carry, but
|
|
||||||
requires similar carry tracking in the decoder, needlessly slowing it down.*/
|
|
||||||
static void ec_enc_carry_out(ec_enc *_this,int _c){
|
|
||||||
if(_c!=EC_SYM_MAX){
|
|
||||||
/*No further carry propagation possible, flush buffer.*/
|
|
||||||
int carry;
|
|
||||||
carry=_c>>EC_SYM_BITS;
|
|
||||||
/*Don't output a byte on the first write.
|
|
||||||
This compare should be taken care of by branch-prediction thereafter.*/
|
|
||||||
if(_this->rem>=0)ec_byte_write1(_this->buf,_this->rem+carry);
|
|
||||||
if(_this->ext>0){
|
|
||||||
unsigned sym;
|
|
||||||
sym=EC_SYM_MAX+carry&EC_SYM_MAX;
|
|
||||||
do ec_byte_write1(_this->buf,sym);
|
|
||||||
while(--(_this->ext)>0);
|
|
||||||
}
|
|
||||||
_this->rem=_c&EC_SYM_MAX;
|
|
||||||
}
|
|
||||||
else _this->ext++;
|
|
||||||
}
|
|
||||||
|
|
||||||
static void ec_enc_normalize(ec_enc *_this){
|
|
||||||
/*If the range is too small, output some bits and rescale it.*/
|
|
||||||
while(_this->rng<=EC_CODE_BOT){
|
|
||||||
ec_enc_carry_out(_this,(int)(_this->low>>EC_CODE_SHIFT));
|
|
||||||
/*Move the next-to-high-order symbol into the high-order position.*/
|
|
||||||
_this->low=_this->low<<EC_SYM_BITS&EC_CODE_TOP-1;
|
|
||||||
_this->rng<<=EC_SYM_BITS;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void ec_enc_init(ec_enc *_this,ec_byte_buffer *_buf){
|
|
||||||
_this->buf=_buf;
|
|
||||||
_this->rem=-1;
|
|
||||||
_this->ext=0;
|
|
||||||
_this->low=0;
|
|
||||||
_this->rng=EC_CODE_TOP;
|
|
||||||
}
|
|
||||||
|
|
||||||
void ec_encode(ec_enc *_this,unsigned _fl,unsigned _fh,unsigned _ft){
|
|
||||||
unsigned r;
|
|
||||||
unsigned s;
|
|
||||||
unsigned d;
|
|
||||||
int nrm;
|
|
||||||
/*Step 1: we want ft in the range of [rng/2,rng).
|
|
||||||
The high-order bits of the rng and ft are computed via a logarithm.
|
|
||||||
This could also be done on some architectures with some custom assembly,
|
|
||||||
which would provide even more speed.*/
|
|
||||||
nrm=EC_ILOG(_this->rng)-EC_ILOG(_ft);
|
|
||||||
/*Having the same high order bit may be too much.
|
|
||||||
We may need to shift one less to ensure that ft is actually in the proper
|
|
||||||
range.*/
|
|
||||||
_ft<<=nrm;
|
|
||||||
d=_ft>_this->rng;
|
|
||||||
_ft>>=d;
|
|
||||||
nrm-=d;
|
|
||||||
/*We then scale everything by the computed power of 2.*/
|
|
||||||
_fl<<=nrm;
|
|
||||||
_fh<<=nrm;
|
|
||||||
/*Step 2: compute the two values of the partition function.
|
|
||||||
d is the splitting point of the interval [0,ft).*/
|
|
||||||
d=_this->rng-_ft;
|
|
||||||
r=_fh+EC_MINI(_fh,d);
|
|
||||||
s=_fl+EC_MINI(_fl,d);
|
|
||||||
/*Step 3: Update the end-point and range of the interval.*/
|
|
||||||
_this->low+=s;
|
|
||||||
_this->rng=r-s;
|
|
||||||
/*Step 4: Normalize the interval.*/
|
|
||||||
ec_enc_normalize(_this);
|
|
||||||
}
|
|
||||||
|
|
||||||
long ec_enc_tell(ec_enc *_this,int _b){
|
|
||||||
ec_uint32 r;
|
|
||||||
int l;
|
|
||||||
long nbits;
|
|
||||||
nbits=ec_byte_bytes(_this->buf)+(_this->rem>=0)+_this->ext<<3;
|
|
||||||
/*To handle the non-integral number of bits still left in the encoder state,
|
|
||||||
we compute the number of bits of low that must be encoded to ensure that
|
|
||||||
the value is inside the range for any possible subsequent bits.
|
|
||||||
Note that this is subtly different than the actual value we would end the
|
|
||||||
stream with, which tries to make as many of the trailing bits zeros as
|
|
||||||
possible.*/
|
|
||||||
nbits+=EC_CODE_BITS;
|
|
||||||
nbits<<=_b;
|
|
||||||
l=EC_ILOG(_this->rng);
|
|
||||||
r=_this->rng>>l-16;
|
|
||||||
while(_b-->0){
|
|
||||||
int b;
|
|
||||||
r=r*r>>15;
|
|
||||||
b=(int)(r>>16);
|
|
||||||
l=l<<1|b;
|
|
||||||
r>>=b;
|
|
||||||
}
|
|
||||||
return nbits-l;
|
|
||||||
}
|
|
||||||
|
|
||||||
void ec_enc_done(ec_enc *_this){
|
|
||||||
/*We compute the integer in the current interval that has the largest number
|
|
||||||
of trailing zeros, and write that to the stream.
|
|
||||||
This is guaranteed to yield the smallest possible encoding.*/
|
|
||||||
if(_this->low){
|
|
||||||
unsigned end;
|
|
||||||
end=EC_CODE_TOP;
|
|
||||||
/*Ensure that the end value is in the range.*/
|
|
||||||
if(end-_this->low>=_this->rng){
|
|
||||||
unsigned msk;
|
|
||||||
msk=EC_CODE_TOP-1;
|
|
||||||
do{
|
|
||||||
msk>>=1;
|
|
||||||
end=_this->low+msk&~msk|msk+1;
|
|
||||||
}
|
|
||||||
while(end-_this->low>=_this->rng);
|
|
||||||
}
|
|
||||||
/*The remaining output is the next free end.*/
|
|
||||||
while(end){
|
|
||||||
ec_enc_carry_out(_this,end>>EC_CODE_SHIFT);
|
|
||||||
end=end<<EC_SYM_BITS&EC_CODE_TOP-1;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
/*If we have a buffered byte flush it into the output buffer.*/
|
|
||||||
if(_this->rem>=0){
|
|
||||||
ec_enc_carry_out(_this,0);
|
|
||||||
_this->rem=-1;
|
|
||||||
}
|
|
||||||
}
|
|
Loading…
Add table
Add a link
Reference in a new issue