mirror of
https://github.com/xiph/opus.git
synced 2025-05-20 18:38:34 +00:00
Use a single u-law embedding
This commit is contained in:
parent
dc082d7c1c
commit
b84a06dd08
4 changed files with 14 additions and 18 deletions
|
@ -240,7 +240,6 @@ W = model.get_layer('gru_a').get_weights()[0][:embed_size,:]
|
||||||
dump_embedding_layer_impl('gru_a_embed_sig', np.dot(E, W), f, hf)
|
dump_embedding_layer_impl('gru_a_embed_sig', np.dot(E, W), f, hf)
|
||||||
W = model.get_layer('gru_a').get_weights()[0][embed_size:2*embed_size,:]
|
W = model.get_layer('gru_a').get_weights()[0][embed_size:2*embed_size,:]
|
||||||
dump_embedding_layer_impl('gru_a_embed_pred', np.dot(E, W), f, hf)
|
dump_embedding_layer_impl('gru_a_embed_pred', np.dot(E, W), f, hf)
|
||||||
E = model.get_layer('embed_exc').get_weights()[0]
|
|
||||||
W = model.get_layer('gru_a').get_weights()[0][2*embed_size:3*embed_size,:]
|
W = model.get_layer('gru_a').get_weights()[0][2*embed_size:3*embed_size,:]
|
||||||
dump_embedding_layer_impl('gru_a_embed_exc', np.dot(E, W), f, hf)
|
dump_embedding_layer_impl('gru_a_embed_exc', np.dot(E, W), f, hf)
|
||||||
W = model.get_layer('gru_a').get_weights()[0][3*embed_size:,:]
|
W = model.get_layer('gru_a').get_weights()[0][3*embed_size:,:]
|
||||||
|
|
|
@ -114,8 +114,7 @@ class PCMInit(Initializer):
|
||||||
}
|
}
|
||||||
|
|
||||||
def new_lpcnet_model(rnn_units1=384, rnn_units2=16, nb_used_features = 38, use_gpu=True):
|
def new_lpcnet_model(rnn_units1=384, rnn_units2=16, nb_used_features = 38, use_gpu=True):
|
||||||
pcm = Input(shape=(None, 2))
|
pcm = Input(shape=(None, 3))
|
||||||
exc = Input(shape=(None, 1))
|
|
||||||
feat = Input(shape=(None, nb_used_features))
|
feat = Input(shape=(None, nb_used_features))
|
||||||
pitch = Input(shape=(None, 1))
|
pitch = Input(shape=(None, 1))
|
||||||
dec_feat = Input(shape=(None, 128))
|
dec_feat = Input(shape=(None, 128))
|
||||||
|
@ -126,9 +125,7 @@ def new_lpcnet_model(rnn_units1=384, rnn_units2=16, nb_used_features = 38, use_g
|
||||||
fconv2 = Conv1D(128, 3, padding='same', activation='tanh', name='feature_conv2')
|
fconv2 = Conv1D(128, 3, padding='same', activation='tanh', name='feature_conv2')
|
||||||
|
|
||||||
embed = Embedding(256, embed_size, embeddings_initializer=PCMInit(), name='embed_sig')
|
embed = Embedding(256, embed_size, embeddings_initializer=PCMInit(), name='embed_sig')
|
||||||
cpcm = Reshape((-1, embed_size*2))(embed(pcm))
|
cpcm = Reshape((-1, embed_size*3))(embed(pcm))
|
||||||
embed2 = Embedding(256, embed_size, embeddings_initializer=PCMInit(), name='embed_exc')
|
|
||||||
cexc = Reshape((-1, embed_size))(embed2(exc))
|
|
||||||
|
|
||||||
pembed = Embedding(256, 64, name='embed_pitch')
|
pembed = Embedding(256, 64, name='embed_pitch')
|
||||||
cat_feat = Concatenate()([feat, Reshape((-1, 64))(pembed(pitch))])
|
cat_feat = Concatenate()([feat, Reshape((-1, 64))(pembed(pitch))])
|
||||||
|
@ -149,13 +146,13 @@ def new_lpcnet_model(rnn_units1=384, rnn_units2=16, nb_used_features = 38, use_g
|
||||||
rnn = GRU(rnn_units1, return_sequences=True, return_state=True, recurrent_activation="sigmoid", reset_after='true', name='gru_a')
|
rnn = GRU(rnn_units1, return_sequences=True, return_state=True, recurrent_activation="sigmoid", reset_after='true', name='gru_a')
|
||||||
rnn2 = GRU(rnn_units2, return_sequences=True, return_state=True, recurrent_activation="sigmoid", reset_after='true', name='gru_b')
|
rnn2 = GRU(rnn_units2, return_sequences=True, return_state=True, recurrent_activation="sigmoid", reset_after='true', name='gru_b')
|
||||||
|
|
||||||
rnn_in = Concatenate()([cpcm, cexc, rep(cfeat)])
|
rnn_in = Concatenate()([cpcm, rep(cfeat)])
|
||||||
md = MDense(pcm_levels, activation='softmax', name='dual_fc')
|
md = MDense(pcm_levels, activation='softmax', name='dual_fc')
|
||||||
gru_out1, _ = rnn(rnn_in)
|
gru_out1, _ = rnn(rnn_in)
|
||||||
gru_out2, _ = rnn2(Concatenate()([gru_out1, rep(cfeat)]))
|
gru_out2, _ = rnn2(Concatenate()([gru_out1, rep(cfeat)]))
|
||||||
ulaw_prob = md(gru_out2)
|
ulaw_prob = md(gru_out2)
|
||||||
|
|
||||||
model = Model([pcm, exc, feat, pitch], ulaw_prob)
|
model = Model([pcm, feat, pitch], ulaw_prob)
|
||||||
model.rnn_units1 = rnn_units1
|
model.rnn_units1 = rnn_units1
|
||||||
model.rnn_units2 = rnn_units2
|
model.rnn_units2 = rnn_units2
|
||||||
model.nb_used_features = nb_used_features
|
model.nb_used_features = nb_used_features
|
||||||
|
@ -163,10 +160,10 @@ def new_lpcnet_model(rnn_units1=384, rnn_units2=16, nb_used_features = 38, use_g
|
||||||
|
|
||||||
encoder = Model([feat, pitch], cfeat)
|
encoder = Model([feat, pitch], cfeat)
|
||||||
|
|
||||||
dec_rnn_in = Concatenate()([cpcm, cexc, dec_feat])
|
dec_rnn_in = Concatenate()([cpcm, dec_feat])
|
||||||
dec_gru_out1, state1 = rnn(dec_rnn_in, initial_state=dec_state1)
|
dec_gru_out1, state1 = rnn(dec_rnn_in, initial_state=dec_state1)
|
||||||
dec_gru_out2, state2 = rnn2(Concatenate()([dec_gru_out1, dec_feat]), initial_state=dec_state2)
|
dec_gru_out2, state2 = rnn2(Concatenate()([dec_gru_out1, dec_feat]), initial_state=dec_state2)
|
||||||
dec_ulaw_prob = md(dec_gru_out2)
|
dec_ulaw_prob = md(dec_gru_out2)
|
||||||
|
|
||||||
decoder = Model([pcm, exc, dec_feat, dec_state1, dec_state2], [dec_ulaw_prob, state1, state2])
|
decoder = Model([pcm, dec_feat, dec_state1, dec_state2], [dec_ulaw_prob, state1, state2])
|
||||||
return model, encoder, decoder
|
return model, encoder, decoder
|
||||||
|
|
|
@ -63,13 +63,12 @@ periods = (.1 + 50*features[:,:,36:37]+100).astype('int16')
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
model.load_weights('lpcnet20c_384_10_G16_80.h5')
|
model.load_weights('lpcnet20g_384_10_G16_02.h5')
|
||||||
|
|
||||||
order = 16
|
order = 16
|
||||||
|
|
||||||
pcm = np.zeros((nb_frames*pcm_chunk_size, ))
|
pcm = np.zeros((nb_frames*pcm_chunk_size, ))
|
||||||
fexc = np.zeros((1, 1, 2), dtype='float32')
|
fexc = np.zeros((1, 1, 3), dtype='int16')
|
||||||
iexc = np.zeros((1, 1, 1), dtype='int16')
|
|
||||||
state1 = np.zeros((1, model.rnn_units1), dtype='float32')
|
state1 = np.zeros((1, model.rnn_units1), dtype='float32')
|
||||||
state2 = np.zeros((1, model.rnn_units2), dtype='float32')
|
state2 = np.zeros((1, model.rnn_units2), dtype='float32')
|
||||||
|
|
||||||
|
@ -88,7 +87,7 @@ for c in range(0, nb_frames):
|
||||||
pred = -sum(a*pcm[f*frame_size + i - 1:f*frame_size + i - order-1:-1])
|
pred = -sum(a*pcm[f*frame_size + i - 1:f*frame_size + i - order-1:-1])
|
||||||
fexc[0, 0, 1] = lin2ulaw(pred)
|
fexc[0, 0, 1] = lin2ulaw(pred)
|
||||||
|
|
||||||
p, state1, state2 = dec.predict([fexc, iexc, cfeat[:, fr:fr+1, :], state1, state2])
|
p, state1, state2 = dec.predict([fexc, cfeat[:, fr:fr+1, :], state1, state2])
|
||||||
#Lower the temperature for voiced frames to reduce noisiness
|
#Lower the temperature for voiced frames to reduce noisiness
|
||||||
p *= np.power(p, np.maximum(0, 1.5*features[c, fr, 37] - .5))
|
p *= np.power(p, np.maximum(0, 1.5*features[c, fr, 37] - .5))
|
||||||
p = p/(1e-18 + np.sum(p))
|
p = p/(1e-18 + np.sum(p))
|
||||||
|
@ -96,8 +95,8 @@ for c in range(0, nb_frames):
|
||||||
p = np.maximum(p-0.002, 0).astype('float64')
|
p = np.maximum(p-0.002, 0).astype('float64')
|
||||||
p = p/(1e-8 + np.sum(p))
|
p = p/(1e-8 + np.sum(p))
|
||||||
|
|
||||||
iexc[0, 0, 0] = np.argmax(np.random.multinomial(1, p[0,0,:], 1))
|
fexc[0, 0, 2] = np.argmax(np.random.multinomial(1, p[0,0,:], 1))
|
||||||
pcm[f*frame_size + i] = pred + ulaw2lin(iexc[0, 0, 0])
|
pcm[f*frame_size + i] = pred + ulaw2lin(fexc[0, 0, 2])
|
||||||
fexc[0, 0, 0] = lin2ulaw(pcm[f*frame_size + i])
|
fexc[0, 0, 0] = lin2ulaw(pcm[f*frame_size + i])
|
||||||
mem = coef*mem + pcm[f*frame_size + i]
|
mem = coef*mem + pcm[f*frame_size + i]
|
||||||
#print(mem)
|
#print(mem)
|
||||||
|
|
|
@ -91,14 +91,15 @@ features[:,:,18:36] = 0
|
||||||
|
|
||||||
periods = (.1 + 50*features[:,:,36:37]+100).astype('int16')
|
periods = (.1 + 50*features[:,:,36:37]+100).astype('int16')
|
||||||
|
|
||||||
in_data = np.concatenate([sig, pred], axis=-1)
|
in_data = np.concatenate([sig, pred, in_exc], axis=-1)
|
||||||
|
|
||||||
del sig
|
del sig
|
||||||
del pred
|
del pred
|
||||||
|
del in_exc
|
||||||
|
|
||||||
# dump models to disk as we go
|
# dump models to disk as we go
|
||||||
checkpoint = ModelCheckpoint('lpcnet20g_384_10_G16_{epoch:02d}.h5')
|
checkpoint = ModelCheckpoint('lpcnet20g_384_10_G16_{epoch:02d}.h5')
|
||||||
|
|
||||||
#model.load_weights('lpcnet9b_384_10_G16_01.h5')
|
#model.load_weights('lpcnet9b_384_10_G16_01.h5')
|
||||||
model.compile(optimizer=Adam(0.001, amsgrad=True, decay=5e-5), loss='sparse_categorical_crossentropy')
|
model.compile(optimizer=Adam(0.001, amsgrad=True, decay=5e-5), loss='sparse_categorical_crossentropy')
|
||||||
model.fit([in_data, in_exc, features, periods], out_exc, batch_size=batch_size, epochs=nb_epochs, validation_split=0.0, callbacks=[checkpoint, lpcnet.Sparsify(2000, 40000, 400, (0.05, 0.05, 0.2))])
|
model.fit([in_data, features, periods], out_exc, batch_size=batch_size, epochs=nb_epochs, validation_split=0.0, callbacks=[checkpoint, lpcnet.Sparsify(2000, 40000, 400, (0.05, 0.05, 0.2))])
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue