mirror of
https://github.com/xiph/opus.git
synced 2025-06-01 16:17:42 +00:00
excitation model
This commit is contained in:
parent
cc1c52a63b
commit
b65031ef64
2 changed files with 23 additions and 14 deletions
|
@ -6,6 +6,7 @@ import numpy as np
|
|||
from keras.optimizers import Adam
|
||||
from keras.callbacks import ModelCheckpoint
|
||||
from ulaw import ulaw2lin, lin2ulaw
|
||||
import keras.backend as K
|
||||
|
||||
import tensorflow as tf
|
||||
from keras.backend.tensorflow_backend import set_session
|
||||
|
@ -21,22 +22,30 @@ model.compile(optimizer=Adam(0.0008), loss='sparse_categorical_crossentropy', me
|
|||
model.summary()
|
||||
|
||||
pcmfile = sys.argv[1]
|
||||
chunk_size = int(sys.argv[2])
|
||||
feature_file = sys.argv[2]
|
||||
nb_features = 54
|
||||
nb_used_features = 38
|
||||
feature_chunk_size = 15
|
||||
pcm_chunk_size = 160*feature_chunk_size
|
||||
|
||||
data = np.fromfile(pcmfile, dtype='int16')
|
||||
#data = data[:100000000]
|
||||
data = data/32768
|
||||
nb_frames = (len(data)-1)//chunk_size
|
||||
data = np.fromfile(pcmfile, dtype='int8')
|
||||
nb_frames = len(data)//pcm_chunk_size
|
||||
|
||||
in_data = data[:nb_frames*chunk_size]
|
||||
#out_data = data[1:1+nb_frames*chunk_size]//256 + 128
|
||||
out_data = lin2ulaw(data[1:1+nb_frames*chunk_size]) + 128
|
||||
features = np.fromfile(feature_file, dtype='float32')
|
||||
|
||||
in_data = np.reshape(in_data, (nb_frames, chunk_size, 1))
|
||||
out_data = np.reshape(out_data, (nb_frames, chunk_size, 1))
|
||||
data = data[:nb_frames*pcm_chunk_size]
|
||||
features = features[:nb_frames*feature_chunk_size*nb_features]
|
||||
|
||||
checkpoint = ModelCheckpoint('wavernn1f_{epoch:02d}.h5')
|
||||
in_data = np.concatenate([data[0:1], data[:-1]])/16.;
|
||||
|
||||
in_data = np.reshape(in_data, (nb_frames, pcm_chunk_size, 1))
|
||||
out_data = np.reshape(data, (nb_frames, pcm_chunk_size, 1))
|
||||
out_data = (out_data.astype('int16')+128).astype('uint8')
|
||||
features = np.reshape(features, (nb_frames, feature_chunk_size, nb_features))
|
||||
features = features[:, :, :nb_used_features]
|
||||
|
||||
checkpoint = ModelCheckpoint('lpcnet1b_{epoch:02d}.h5')
|
||||
|
||||
#model.load_weights('wavernn1c_01.h5')
|
||||
model.compile(optimizer=Adam(0.002, amsgrad=True, decay=1e-4), loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'])
|
||||
model.compile(optimizer=Adam(0.002, amsgrad=True, decay=2e-4), loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'])
|
||||
model.fit(in_data, out_data, batch_size=batch_size, epochs=30, validation_split=0.2, callbacks=[checkpoint])
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue