mirror of
https://github.com/xiph/opus.git
synced 2025-06-04 09:37:44 +00:00
More meaningful names
This commit is contained in:
parent
b9cd61be8b
commit
b0c61158f7
2 changed files with 13 additions and 13 deletions
|
@ -32,7 +32,7 @@ def printVector(f, vector, name):
|
|||
|
||||
def dump_layer_ignore(self, f, hf):
|
||||
print("ignoring layer " + self.name + " of type " + self.__class__.__name__)
|
||||
False
|
||||
return False
|
||||
Layer.dump_layer = dump_layer_ignore
|
||||
|
||||
def dump_gru_layer(self, f, hf):
|
||||
|
@ -55,7 +55,7 @@ def dump_gru_layer(self, f, hf):
|
|||
.format(name, name, name, name, weights[0].shape[0], weights[0].shape[1]//3, activation, reset_after))
|
||||
hf.write('#define {}_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3))
|
||||
hf.write('extern const GRULayer {};\n\n'.format(name));
|
||||
True
|
||||
return True
|
||||
CuDNNGRU.dump_layer = dump_gru_layer
|
||||
GRU.dump_layer = dump_gru_layer
|
||||
|
||||
|
@ -74,7 +74,7 @@ def dump_dense_layer(self, f, hf):
|
|||
.format(name, name, name, weights[0].shape[0], weights[0].shape[1], activation))
|
||||
hf.write('#define {}_SIZE {}\n'.format(name.upper(), weights[0].shape[1]))
|
||||
hf.write('extern const DenseLayer {};\n\n'.format(name));
|
||||
False
|
||||
return False
|
||||
Dense.dump_layer = dump_dense_layer
|
||||
|
||||
def dump_mdense_layer(self, f, hf):
|
||||
|
@ -93,7 +93,7 @@ def dump_mdense_layer(self, f, hf):
|
|||
.format(name, name, name, name, weights[0].shape[0], weights[0].shape[1], activation))
|
||||
hf.write('#define {}_SIZE {}\n'.format(name.upper(), weights[0].shape[0]))
|
||||
hf.write('extern const MDenseLayer {};\n\n'.format(name));
|
||||
False
|
||||
return False
|
||||
MDense.dump_layer = dump_mdense_layer
|
||||
|
||||
|
||||
|
|
|
@ -94,12 +94,12 @@ def new_lpcnet_model(rnn_units1=384, rnn_units2=16, nb_used_features = 38):
|
|||
dec_state1 = Input(shape=(rnn_units1,))
|
||||
dec_state2 = Input(shape=(rnn_units2,))
|
||||
|
||||
fconv1 = Conv1D(128, 3, padding='same', activation='tanh')
|
||||
fconv2 = Conv1D(102, 3, padding='same', activation='tanh')
|
||||
fconv1 = Conv1D(128, 3, padding='same', activation='tanh', name='feature_conv1')
|
||||
fconv2 = Conv1D(102, 3, padding='same', activation='tanh', name='feature_conv2')
|
||||
|
||||
embed = Embedding(256, embed_size, embeddings_initializer=PCMInit())
|
||||
embed = Embedding(256, embed_size, embeddings_initializer=PCMInit(), name='embed_sig')
|
||||
cpcm = Reshape((-1, embed_size*2))(embed(pcm))
|
||||
embed2 = Embedding(256, embed_size, embeddings_initializer=PCMInit())
|
||||
embed2 = Embedding(256, embed_size, embeddings_initializer=PCMInit(), name='embed_exc')
|
||||
cexc = Reshape((-1, embed_size))(embed2(exc))
|
||||
|
||||
pembed = Embedding(256, 64)
|
||||
|
@ -107,18 +107,18 @@ def new_lpcnet_model(rnn_units1=384, rnn_units2=16, nb_used_features = 38):
|
|||
|
||||
cfeat = fconv2(fconv1(cat_feat))
|
||||
|
||||
fdense1 = Dense(128, activation='tanh')
|
||||
fdense2 = Dense(128, activation='tanh')
|
||||
fdense1 = Dense(128, activation='tanh', name='feature_dense1')
|
||||
fdense2 = Dense(128, activation='tanh', name='feature_dense2')
|
||||
|
||||
cfeat = Add()([cfeat, cat_feat])
|
||||
cfeat = fdense2(fdense1(cfeat))
|
||||
|
||||
rep = Lambda(lambda x: K.repeat_elements(x, 160, 1))
|
||||
|
||||
rnn = CuDNNGRU(rnn_units1, return_sequences=True, return_state=True)
|
||||
rnn2 = CuDNNGRU(rnn_units2, return_sequences=True, return_state=True)
|
||||
rnn = CuDNNGRU(rnn_units1, return_sequences=True, return_state=True, name='gru_a')
|
||||
rnn2 = CuDNNGRU(rnn_units2, return_sequences=True, return_state=True, name='gru_b')
|
||||
rnn_in = Concatenate()([cpcm, cexc, rep(cfeat)])
|
||||
md = MDense(pcm_levels, activation='softmax')
|
||||
md = MDense(pcm_levels, activation='softmax', name='dual_fc')
|
||||
gru_out1, _ = rnn(rnn_in)
|
||||
gru_out2, _ = rnn2(Concatenate()([gru_out1, rep(cfeat)]))
|
||||
ulaw_prob = md(gru_out2)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue