mirror of
https://github.com/xiph/opus.git
synced 2025-05-16 16:38:30 +00:00
Using the right name: s/gemm/sgemv/
This commit is contained in:
parent
c395a68b7d
commit
b05f950e38
1 changed files with 21 additions and 21 deletions
42
dnn/nnet.c
42
dnn/nnet.c
|
@ -133,7 +133,7 @@ static void vec_sigmoid(float *y, const float *x, int N)
|
|||
}
|
||||
}
|
||||
|
||||
static void gemm_accum16(float *out, const float *weights, int rows, int cols, int col_stride, const float *x)
|
||||
static void sgemv_accum16(float *out, const float *weights, int rows, int cols, int col_stride, const float *x)
|
||||
{
|
||||
int i, j;
|
||||
for (i=0;i<rows;i+=16)
|
||||
|
@ -159,7 +159,7 @@ static void gemm_accum16(float *out, const float *weights, int rows, int cols, i
|
|||
_mm256_storeu_ps (&y[8], vy8);
|
||||
}
|
||||
}
|
||||
static void sparse_gemm_accum16(float *out, const float *weights, int rows, const int *idx, const float *x)
|
||||
static void sparse_sgemv_accum16(float *out, const float *weights, int rows, const int *idx, const float *x)
|
||||
{
|
||||
int i, j;
|
||||
for (i=0;i<rows;i+=16)
|
||||
|
@ -277,7 +277,7 @@ static void vec_sigmoid(float *y, const float *x, int N)
|
|||
}
|
||||
}
|
||||
|
||||
static void gemm_accum16(float *out, const float *weights, int rows, int cols, int col_stride, const float *x)
|
||||
static void sgemv_accum16(float *out, const float *weights, int rows, int cols, int col_stride, const float *x)
|
||||
{
|
||||
int i, j;
|
||||
for (i=0;i<rows;i+=16)
|
||||
|
@ -310,7 +310,7 @@ static void gemm_accum16(float *out, const float *weights, int rows, int cols, i
|
|||
}
|
||||
}
|
||||
|
||||
static void sparse_gemm_accum16(float *out, const float *w, int rows, const int *idx, const float *x)
|
||||
static void sparse_sgemv_accum16(float *out, const float *w, int rows, const int *idx, const float *x)
|
||||
{
|
||||
int i, j;
|
||||
for (i=0;i<rows;i+=16)
|
||||
|
@ -353,12 +353,12 @@ static OPUS_INLINE float relu(float x)
|
|||
}
|
||||
|
||||
|
||||
static void gemm_accum(float *out, const float *weights, int rows, int cols, int col_stride, const float *x)
|
||||
static void sgemv_accum(float *out, const float *weights, int rows, int cols, int col_stride, const float *x)
|
||||
{
|
||||
int i, j;
|
||||
if (rows % 16 == 0)
|
||||
{
|
||||
gemm_accum16(out, weights, rows, cols, col_stride, x);
|
||||
sgemv_accum16(out, weights, rows, cols, col_stride, x);
|
||||
} else {
|
||||
for (i=0;i<rows;i++)
|
||||
{
|
||||
|
@ -410,7 +410,7 @@ void compute_dense(const DenseLayer *layer, float *output, const float *input)
|
|||
celt_assert(input != output);
|
||||
for (i=0;i<N;i++)
|
||||
output[i] = layer->bias[i];
|
||||
gemm_accum(output, layer->input_weights, N, M, stride, input);
|
||||
sgemv_accum(output, layer->input_weights, N, M, stride, input);
|
||||
compute_activation(output, output, N, layer->activation);
|
||||
}
|
||||
|
||||
|
@ -428,7 +428,7 @@ void compute_mdense(const MDenseLayer *layer, float *output, const float *input)
|
|||
stride = N*C;
|
||||
for (i=0;i<N*C;i++)
|
||||
tmp[i] = layer->bias[i];
|
||||
gemm_accum(tmp, layer->input_weights, N*C, M, stride, input);
|
||||
sgemv_accum(tmp, layer->input_weights, N*C, M, stride, input);
|
||||
compute_activation(tmp, tmp, N*C, ACTIVATION_TANH);
|
||||
for (i=0;i<N;i++)
|
||||
output[i] = 0;
|
||||
|
@ -462,8 +462,8 @@ void compute_gru(const GRULayer *gru, float *state, const float *input)
|
|||
for (i=0;i<N;i++)
|
||||
z[i] += gru->bias[3*N + i];
|
||||
}
|
||||
gemm_accum(z, gru->input_weights, N, M, stride, input);
|
||||
gemm_accum(z, gru->recurrent_weights, N, N, stride, state);
|
||||
sgemv_accum(z, gru->input_weights, N, M, stride, input);
|
||||
sgemv_accum(z, gru->recurrent_weights, N, N, stride, state);
|
||||
compute_activation(z, z, N, ACTIVATION_SIGMOID);
|
||||
|
||||
/* Compute reset gate. */
|
||||
|
@ -474,8 +474,8 @@ void compute_gru(const GRULayer *gru, float *state, const float *input)
|
|||
for (i=0;i<N;i++)
|
||||
r[i] += gru->bias[4*N + i];
|
||||
}
|
||||
gemm_accum(r, &gru->input_weights[N], N, M, stride, input);
|
||||
gemm_accum(r, &gru->recurrent_weights[N], N, N, stride, state);
|
||||
sgemv_accum(r, &gru->input_weights[N], N, M, stride, input);
|
||||
sgemv_accum(r, &gru->recurrent_weights[N], N, N, stride, state);
|
||||
compute_activation(r, r, N, ACTIVATION_SIGMOID);
|
||||
|
||||
/* Compute output. */
|
||||
|
@ -485,15 +485,15 @@ void compute_gru(const GRULayer *gru, float *state, const float *input)
|
|||
{
|
||||
for (i=0;i<N;i++)
|
||||
tmp[i] = gru->bias[5*N + i];
|
||||
gemm_accum(tmp, &gru->recurrent_weights[2*N], N, N, stride, state);
|
||||
sgemv_accum(tmp, &gru->recurrent_weights[2*N], N, N, stride, state);
|
||||
for (i=0;i<N;i++)
|
||||
h[i] += tmp[i] * r[i];
|
||||
gemm_accum(h, &gru->input_weights[2*N], N, M, stride, input);
|
||||
sgemv_accum(h, &gru->input_weights[2*N], N, M, stride, input);
|
||||
} else {
|
||||
for (i=0;i<N;i++)
|
||||
tmp[i] = state[i] * r[i];
|
||||
gemm_accum(h, &gru->input_weights[2*N], N, M, stride, input);
|
||||
gemm_accum(h, &gru->recurrent_weights[2*N], N, N, stride, tmp);
|
||||
sgemv_accum(h, &gru->input_weights[2*N], N, M, stride, input);
|
||||
sgemv_accum(h, &gru->recurrent_weights[2*N], N, N, stride, tmp);
|
||||
}
|
||||
compute_activation(h, h, N, gru->activation);
|
||||
for (i=0;i<N;i++)
|
||||
|
@ -524,10 +524,10 @@ void compute_gru2(const GRULayer *gru, float *state, const float *input)
|
|||
/* Compute update gate. */
|
||||
for (i=0;i<3*N;i++)
|
||||
zrh[i] = gru->bias[i];
|
||||
gemm_accum(zrh, gru->input_weights, 3*N, M, stride, input);
|
||||
sgemv_accum(zrh, gru->input_weights, 3*N, M, stride, input);
|
||||
for (i=0;i<3*N;i++)
|
||||
recur[i] = gru->bias[3*N + i];
|
||||
gemm_accum(recur, gru->recurrent_weights, 3*N, N, stride, state);
|
||||
sgemv_accum(recur, gru->recurrent_weights, 3*N, N, stride, state);
|
||||
for (i=0;i<2*N;i++)
|
||||
zrh[i] += recur[i];
|
||||
compute_activation(zrh, zrh, 2*N, ACTIVATION_SIGMOID);
|
||||
|
@ -561,7 +561,7 @@ void compute_gru3(const GRULayer *gru, float *state, const float *input)
|
|||
RNN_COPY(zrh, input, 3*N);
|
||||
for (i=0;i<3*N;i++)
|
||||
recur[i] = gru->bias[3*N + i];
|
||||
gemm_accum(recur, gru->recurrent_weights, 3*N, N, stride, state);
|
||||
sgemv_accum(recur, gru->recurrent_weights, 3*N, N, stride, state);
|
||||
for (i=0;i<2*N;i++)
|
||||
zrh[i] += recur[i];
|
||||
compute_activation(zrh, zrh, 2*N, ACTIVATION_SIGMOID);
|
||||
|
@ -598,7 +598,7 @@ void compute_sparse_gru(const SparseGRULayer *gru, float *state, const float *in
|
|||
for (i=0;i<N;i++)
|
||||
recur[k*N + i] += gru->diag_weights[k*N + i]*state[i];
|
||||
}
|
||||
sparse_gemm_accum16(recur, gru->recurrent_weights, 3*N, gru->idx, state);
|
||||
sparse_sgemv_accum16(recur, gru->recurrent_weights, 3*N, gru->idx, state);
|
||||
for (i=0;i<2*N;i++)
|
||||
zrh[i] += recur[i];
|
||||
compute_activation(zrh, zrh, 2*N, ACTIVATION_SIGMOID);
|
||||
|
@ -626,7 +626,7 @@ void compute_conv1d(const Conv1DLayer *layer, float *output, float *mem, const f
|
|||
stride = N;
|
||||
for (i=0;i<N;i++)
|
||||
output[i] = layer->bias[i];
|
||||
gemm_accum(output, layer->input_weights, N, M, stride, tmp);
|
||||
sgemv_accum(output, layer->input_weights, N, M, stride, tmp);
|
||||
compute_activation(output, output, N, layer->activation);
|
||||
RNN_COPY(mem, &tmp[layer->nb_inputs], layer->nb_inputs*(layer->kernel_size-1));
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue