mu-law code cleanup

This commit is contained in:
Jean-Marc Valin 2018-10-09 02:39:12 -04:00
parent 08211c279f
commit aba9af8bde
3 changed files with 25 additions and 23 deletions

View file

@ -34,7 +34,7 @@ feature_chunk_size = 15
pcm_chunk_size = frame_size*feature_chunk_size
data = np.fromfile(pcmfile, dtype='int16')
data = np.minimum(127, lin2ulaw(data/32768.))
data = lin2ulaw(data)
nb_frames = len(data)//pcm_chunk_size
features = np.fromfile(feature_file, dtype='float32')
@ -54,9 +54,9 @@ for i in range(2, nb_frames*feature_chunk_size):
in_pitch = np.reshape(pitch/16., (nb_frames, pcm_chunk_size, 1))
in_data = np.reshape(in_data, (nb_frames, pcm_chunk_size, 1))
in_data = (in_data.astype('int16')+128).astype('uint8')
in_data = in_data.astype('uint8')
out_data = np.reshape(data, (nb_frames, pcm_chunk_size, 1))
out_data = (out_data.astype('int16')+128).astype('uint8')
out_data = out_data.astype('uint8')
features = np.reshape(features, (nb_frames, feature_chunk_size, nb_features))
features = features[:, :, :]
@ -66,7 +66,7 @@ in_data = np.reshape(in_data, (nb_frames*pcm_chunk_size, 1))
out_data = np.reshape(data, (nb_frames*pcm_chunk_size, 1))
model.load_weights('wavenet4f3_30.h5')
model.load_weights('wavenet4f2_30.h5')
order = 16
@ -87,7 +87,7 @@ for c in range(1, nb_frames):
for i in range(frame_size):
#fexc[0, 0, 0] = iexc + 128
pred = -sum(a*pcm[f*frame_size + i - 1:f*frame_size + i - order-1:-1, 0])
fexc[0, 0, 1] = np.minimum(127, lin2ulaw(pred/32768.)) + 128
fexc[0, 0, 1] = lin2ulaw(pred)
p, state = dec.predict([fexc, iexc, cfeat[:, fr:fr+1, :], state])
#p = p*p
@ -96,8 +96,8 @@ for c in range(1, nb_frames):
p = p/(1e-8 + np.sum(p))
iexc[0, 0, 0] = np.argmax(np.random.multinomial(1, p[0,0,:], 1))
pcm[f*frame_size + i, 0] = pred + 32768*ulaw2lin(iexc[0, 0, 0]-128)
fexc[0, 0, 0] = lin2ulaw(pcm[f*frame_size + i, 0]/32768) + 128
print(iexc[0, 0, 0], 32768*ulaw2lin(out_data[f*frame_size + i, 0]), pcm[f*frame_size + i, 0], pred)
pcm[f*frame_size + i, 0] = pred + ulaw2lin(iexc[0, 0, 0])
fexc[0, 0, 0] = lin2ulaw(pcm[f*frame_size + i, 0])
print(iexc[0, 0, 0], ulaw2lin(out_data[f*frame_size + i, 0]), pcm[f*frame_size + i, 0], pred)

View file

@ -36,7 +36,7 @@ feature_chunk_size = 15
pcm_chunk_size = frame_size*feature_chunk_size
udata = np.fromfile(pcm_file, dtype='int16')
data = np.minimum(127, lin2ulaw(udata/32768.))
data = lin2ulaw(udata)
nb_frames = len(data)//pcm_chunk_size
features = np.fromfile(feature_file, dtype='float32')
@ -48,14 +48,14 @@ features = features[:nb_frames*feature_chunk_size*nb_features]
in_data = np.concatenate([data[0:1], data[:-1]]);
noise = np.concatenate([np.zeros((len(data)*1//5)), np.random.randint(-3, 3, len(data)*1//5), np.random.randint(-2, 2, len(data)*1//5), np.random.randint(-1, 1, len(data)*2//5)])
in_data = in_data + noise
in_data = np.maximum(-127, np.minimum(127, in_data))
in_data = np.clip(in_data, 0, 255)
features = np.reshape(features, (nb_frames*feature_chunk_size, nb_features))
upred = np.fromfile(pred_file, dtype='int16')
upred = upred[:nb_frames*pcm_chunk_size]
pred_in = 32768.*ulaw2lin(in_data)
pred_in = ulaw2lin(in_data)
for i in range(2, nb_frames*feature_chunk_size):
upred[i*frame_size:(i+1)*frame_size] = 0
#if i % 100000 == 0:
@ -64,7 +64,7 @@ for i in range(2, nb_frames*feature_chunk_size):
upred[i*frame_size:(i+1)*frame_size] = upred[i*frame_size:(i+1)*frame_size] - \
pred_in[i*frame_size-k:(i+1)*frame_size-k]*features[i, nb_features-16+k]
pred = np.minimum(127, lin2ulaw(upred/32768.))
pred = lin2ulaw(upred)
#pred = pred + np.random.randint(-1, 1, len(data))
@ -77,23 +77,22 @@ for i in range(2, nb_frames*feature_chunk_size):
in_pitch = np.reshape(pitch/16., (nb_frames, pcm_chunk_size, 1))
in_data = np.reshape(in_data, (nb_frames, pcm_chunk_size, 1))
in_data = (in_data.astype('int16')+128).astype('uint8')
out_data = lin2ulaw((udata-upred)/32768)
in_data = in_data.astype('uint8')
out_data = lin2ulaw(udata-upred)
in_exc = np.concatenate([out_data[0:1], out_data[:-1]]);
out_data = np.reshape(out_data, (nb_frames, pcm_chunk_size, 1))
out_data = np.maximum(-127, np.minimum(127, out_data))
out_data = (out_data.astype('int16')+128).astype('uint8')
out_data = out_data.astype('uint8')
in_exc = np.reshape(in_exc, (nb_frames, pcm_chunk_size, 1))
in_exc = np.maximum(-127, np.minimum(127, in_exc))
in_exc = (in_exc.astype('int16')+128).astype('uint8')
in_exc = in_exc.astype('uint8')
features = np.reshape(features, (nb_frames, feature_chunk_size, nb_features))
features = features[:, :, :nb_used_features]
pred = np.reshape(pred, (nb_frames, pcm_chunk_size, 1))
pred = (pred.astype('int16')+128).astype('uint8')
pred = pred.astype('uint8')
periods = (50*features[:,:,36:37]+100).astype('int16')
in_data = np.concatenate([in_data, pred], axis=-1)
@ -104,7 +103,7 @@ in_data = np.concatenate([in_data, pred], axis=-1)
# f.create_dataset('data', data=in_data[:50000, :, :])
# f.create_dataset('feat', data=features[:50000, :, :])
checkpoint = ModelCheckpoint('wavenet4f3_{epoch:02d}.h5')
checkpoint = ModelCheckpoint('wavenet5b_{epoch:02d}.h5')
#model.load_weights('wavenet4f2_30.h5')
model.compile(optimizer=Adam(0.001, amsgrad=True, decay=2e-4), loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'])

View file

@ -2,15 +2,18 @@
import numpy as np
import math
scale = 255.0/32768.0
scale_1 = 32768.0/255.0
def ulaw2lin(u):
u = u - 128
s = np.sign(u)
u = np.abs(u)
return s*(np.exp(u/128.*math.log(256))-1)/255
return s*scale_1*(np.exp(u/128.*math.log(256))-1)
def lin2ulaw(x):
s = np.sign(x)
x = np.abs(x)
u = (s*(128*np.log(1+255*x)/math.log(256)))
u = np.round(u)
u = (s*(128*np.log(1+scale*x)/math.log(256)))
u = np.clip(128 + np.round(u), 0, 255)
return u.astype('int16')