Script to compute the groundtruth data using CREPE

This commit is contained in:
Jean-Marc Valin 2023-09-27 13:00:12 -04:00
parent 217c40d4ac
commit a6b4fe375a
No known key found for this signature in database
GPG key ID: 531A52533318F00A

View file

@ -0,0 +1,72 @@
"""
Perform Data Augmentation (Gain, Additive Noise, Random Filtering) on Input TTS Data
1. Read in chunks and compute clean pitch first
2. Then add in augmentation (Noise/Level/Response)
- Adds filtered noise from the "Demand" dataset, https://zenodo.org/record/1227121#.XRKKxYhKiUk
- When using the Demand Dataset, consider each channel as a possible noise input, and keep the first 4 minutes of noise for training
3. Use this "augmented" audio for feature computation, and compute pitch using CREPE on the clean input
Notes: To ensure consistency with the discovered CREPE offset, we do the following
- We pad the input audio to the zero-centered CREPE estimator with 80 zeros
- We pad the input audio to our feature computation with 160 zeros to center them
"""
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('data', type=str, help='input raw audio data')
parser.add_argument('output', type=str, help='output directory')
parser.add_argument('--gpu-index', type=int, help='GPU index to use if multiple GPUs',default = 0,required = False)
parser.add_argument('--chunk-size-frames', type=int, help='Number of frames to process at a time',default = 100000,required = False)
args = parser.parse_args()
import os
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu_index)
import numpy as np
import tqdm
import crepe
data = np.memmap(args.data, dtype=np.int16,mode = 'r')
# list_features = []
list_cents = []
list_confidences = []
min_period = 32
max_period = 256
f_ref = 16000/max_period
chunk_size_frames = args.chunk_size_frames
chunk_size = chunk_size_frames*160
nb_chunks = (data.shape[0]+79)//chunk_size+1
output_data = np.zeros((0,2),dtype='float32')
for i in tqdm.trange(nb_chunks):
if i==0:
chunk = np.concatenate([np.zeros(80),data[:chunk_size-80]])
elif i==nb_chunks-1:
chunk = data[i*chunk_size-80:]
else:
chunk = data[i*chunk_size-80:(i+1)*chunk_size-80]
chunk = chunk/np.array(32767.,dtype='float32')
# Clean Pitch/Confidence Estimate
# Padding input to CREPE by 80 samples to ensure it aligns
_, pitch, confidence, _ = crepe.predict(chunk, 16000, center=True, viterbi=True,verbose=0)
pitch = pitch[:chunk_size_frames]
confidence = confidence[:chunk_size_frames]
# Filter out of range pitches/confidences
confidence[pitch < 16000/max_period] = 0
confidence[pitch > 16000/min_period] = 0
pitch = np.reshape(pitch, (-1, 1))
confidence = np.reshape(confidence, (-1, 1))
out = np.concatenate([pitch, confidence], axis=-1, dtype='float32')
output_data = np.concatenate([output_data, out], axis=0)
output_data.tofile(args.output)