diff --git a/dnn/training_tf2/fec_encoder.py b/dnn/training_tf2/fec_encoder.py index 43941aba..f755d560 100644 --- a/dnn/training_tf2/fec_encoder.py +++ b/dnn/training_tf2/fec_encoder.py @@ -121,7 +121,7 @@ quant_gru_state_dec = pvq_quantize(gru_state_dec, 30) # rate estimate hard_distr_embed = tf.math.sigmoid(quant_embed_dec[:, :, 4 * nsymbols : ]).numpy() -rate_input = np.concatenate((symbols, hard_distr_embed, enc_lambda), axis=-1) +rate_input = np.concatenate((qsymbols, hard_distr_embed, enc_lambda), axis=-1) rates = sq_rate_metric(None, rate_input, reduce=False).numpy() # run decoder @@ -133,7 +133,7 @@ packet_sizes = [] for i in range(offset, num_frames): print(f"processing frame {i - offset}...") - features = decoder.predict([symbols[:, i - 2 * input_length + 2 : i + 1 : 2, :], quant_embed_dec[:, i - 2 * input_length + 2 : i + 1 : 2, :], quant_gru_state_dec[:, i, :]]) + features = decoder.predict([qsymbols[:, i - 2 * input_length + 2 : i + 1 : 2, :], quant_embed_dec[:, i - 2 * input_length + 2 : i + 1 : 2, :], quant_gru_state_dec[:, i, :]]) packets.append(features) packet_size = 8 * int((np.sum(rates[:, i - 2 * input_length + 2 : i + 1 : 2]) + 7) / 8) + 64 packet_sizes.append(packet_size)