mirror of
https://github.com/xiph/opus.git
synced 2025-05-19 18:08:29 +00:00
Remove no longer used files (old wavenet and LPCNet implementations)
This commit is contained in:
parent
3122b6b3bc
commit
97dcf52a01
4 changed files with 0 additions and 308 deletions
|
@ -1,84 +0,0 @@
|
|||
#!/usr/bin/python3
|
||||
|
||||
import lpcnet
|
||||
import sys
|
||||
import numpy as np
|
||||
from keras.optimizers import Adam
|
||||
from keras.callbacks import ModelCheckpoint
|
||||
from ulaw import ulaw2lin, lin2ulaw
|
||||
import keras.backend as K
|
||||
import h5py
|
||||
from adadiff import Adadiff
|
||||
|
||||
#import tensorflow as tf
|
||||
#from keras.backend.tensorflow_backend import set_session
|
||||
#config = tf.ConfigProto()
|
||||
#config.gpu_options.per_process_gpu_memory_fraction = 0.28
|
||||
#set_session(tf.Session(config=config))
|
||||
|
||||
nb_epochs = 40
|
||||
batch_size = 64
|
||||
|
||||
model, enc, dec = lpcnet.new_wavernn_model()
|
||||
model.compile(optimizer=Adadiff(), loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'])
|
||||
#model.summary()
|
||||
|
||||
pcmfile = sys.argv[1]
|
||||
feature_file = sys.argv[2]
|
||||
frame_size = 160
|
||||
nb_features = 54
|
||||
nb_used_features = lpcnet.nb_used_features
|
||||
feature_chunk_size = 15
|
||||
pcm_chunk_size = frame_size*feature_chunk_size
|
||||
|
||||
data = np.fromfile(pcmfile, dtype='int8')
|
||||
nb_frames = len(data)//pcm_chunk_size
|
||||
|
||||
features = np.fromfile(feature_file, dtype='float32')
|
||||
|
||||
data = data[:nb_frames*pcm_chunk_size]
|
||||
features = features[:nb_frames*feature_chunk_size*nb_features]
|
||||
|
||||
in_data = np.concatenate([data[0:1], data[:-1]])/16.;
|
||||
|
||||
features = np.reshape(features, (nb_frames, feature_chunk_size, nb_features))
|
||||
|
||||
in_data = np.reshape(in_data, (nb_frames*pcm_chunk_size, 1))
|
||||
out_data = np.reshape(data, (nb_frames*pcm_chunk_size, 1))
|
||||
|
||||
|
||||
model.load_weights('lpcnet3a_21.h5')
|
||||
|
||||
order = 16
|
||||
|
||||
pcm = 0.*out_data
|
||||
exc = out_data-0
|
||||
pitch = np.zeros((1, 1, 1), dtype='float32')
|
||||
fexc = np.zeros((1, 1, 1), dtype='float32')
|
||||
iexc = np.zeros((1, 1, 1), dtype='int16')
|
||||
state = np.zeros((1, lpcnet.rnn_units), dtype='float32')
|
||||
for c in range(1, nb_frames):
|
||||
cfeat = enc.predict(features[c:c+1, :, :nb_used_features])
|
||||
for fr in range(1, feature_chunk_size):
|
||||
f = c*feature_chunk_size + fr
|
||||
a = features[c, fr, nb_used_features:]
|
||||
|
||||
#print(a)
|
||||
gain = 1.;
|
||||
period = int(50*features[c, fr, 36]+100)
|
||||
period = period - 4
|
||||
for i in range(frame_size):
|
||||
pitch[0, 0, 0] = exc[f*frame_size + i - period, 0]
|
||||
fexc[0, 0, 0] = 2*exc[f*frame_size + i - 1]
|
||||
#fexc[0, 0, 0] = in_data[f*frame_size + i, 0]
|
||||
#print(cfeat.shape)
|
||||
p, state = dec.predict([fexc, cfeat[:, fr:fr+1, :], state])
|
||||
#p = np.maximum(p-0.003, 0)
|
||||
p = p/(1e-5 + np.sum(p))
|
||||
#print(np.sum(p))
|
||||
iexc[0, 0, 0] = np.argmax(np.random.multinomial(1, p[0,0,:], 1))-128
|
||||
exc[f*frame_size + i] = iexc[0, 0, 0]/16.
|
||||
#out_data[f*frame_size + i, 0] = iexc[0, 0, 0]
|
||||
pcm[f*frame_size + i, 0] = gain*iexc[0, 0, 0] - sum(a*pcm[f*frame_size + i - 1:f*frame_size + i - order-1:-1, 0])
|
||||
print(iexc[0, 0, 0], out_data[f*frame_size + i, 0], pcm[f*frame_size + i, 0])
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue