Convert training code to Tensorflow 2

This commit is contained in:
Jean-Marc Valin 2020-08-19 14:27:07 -04:00
parent 88a7878fdb
commit 90fec91b12
5 changed files with 677 additions and 0 deletions

267
dnn/training_tf2/dump_lpcnet.py Executable file
View file

@ -0,0 +1,267 @@
#!/usr/bin/python3
'''Copyright (c) 2017-2018 Mozilla
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
'''
import lpcnet
import sys
import numpy as np
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.layers import Layer, GRU, Dense, Conv1D, Embedding
from ulaw import ulaw2lin, lin2ulaw
from mdense import MDense
import h5py
import re
max_rnn_neurons = 1
max_conv_inputs = 1
max_mdense_tmp = 1
def printVector(f, vector, name, dtype='float'):
v = np.reshape(vector, (-1));
#print('static const float ', name, '[', len(v), '] = \n', file=f)
f.write('static const {} {}[{}] = {{\n '.format(dtype, name, len(v)))
for i in range(0, len(v)):
f.write('{}'.format(v[i]))
if (i!=len(v)-1):
f.write(',')
else:
break;
if (i%8==7):
f.write("\n ")
else:
f.write(" ")
#print(v, file=f)
f.write('\n};\n\n')
return;
def printSparseVector(f, A, name):
N = A.shape[0]
W = np.zeros((0,))
diag = np.concatenate([np.diag(A[:,:N]), np.diag(A[:,N:2*N]), np.diag(A[:,2*N:])])
A[:,:N] = A[:,:N] - np.diag(np.diag(A[:,:N]))
A[:,N:2*N] = A[:,N:2*N] - np.diag(np.diag(A[:,N:2*N]))
A[:,2*N:] = A[:,2*N:] - np.diag(np.diag(A[:,2*N:]))
printVector(f, diag, name + '_diag')
idx = np.zeros((0,), dtype='int')
for i in range(3*N//16):
pos = idx.shape[0]
idx = np.append(idx, -1)
nb_nonzero = 0
for j in range(N):
if np.sum(np.abs(A[j, i*16:(i+1)*16])) > 1e-10:
nb_nonzero = nb_nonzero + 1
idx = np.append(idx, j)
W = np.concatenate([W, A[j, i*16:(i+1)*16]])
idx[pos] = nb_nonzero
printVector(f, W, name)
#idx = np.tile(np.concatenate([np.array([N]), np.arange(N)]), 3*N//16)
printVector(f, idx, name + '_idx', dtype='int')
return;
def dump_layer_ignore(self, f, hf):
print("ignoring layer " + self.name + " of type " + self.__class__.__name__)
return False
Layer.dump_layer = dump_layer_ignore
def dump_sparse_gru(self, f, hf):
global max_rnn_neurons
name = 'sparse_' + self.name
print("printing layer " + name + " of type sparse " + self.__class__.__name__)
weights = self.get_weights()
printSparseVector(f, weights[1], name + '_recurrent_weights')
printVector(f, weights[-1], name + '_bias')
if hasattr(self, 'activation'):
activation = self.activation.__name__.upper()
else:
activation = 'TANH'
if hasattr(self, 'reset_after') and not self.reset_after:
reset_after = 0
else:
reset_after = 1
neurons = weights[0].shape[1]//3
max_rnn_neurons = max(max_rnn_neurons, neurons)
f.write('const SparseGRULayer {} = {{\n {}_bias,\n {}_recurrent_weights_diag,\n {}_recurrent_weights,\n {}_recurrent_weights_idx,\n {}, ACTIVATION_{}, {}\n}};\n\n'
.format(name, name, name, name, name, weights[0].shape[1]//3, activation, reset_after))
hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3))
hf.write('#define {}_STATE_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3))
hf.write('extern const SparseGRULayer {};\n\n'.format(name));
return True
def dump_gru_layer(self, f, hf):
global max_rnn_neurons
name = self.name
print("printing layer " + name + " of type " + self.__class__.__name__)
weights = self.get_weights()
printVector(f, weights[0], name + '_weights')
printVector(f, weights[1], name + '_recurrent_weights')
printVector(f, weights[-1], name + '_bias')
if hasattr(self, 'activation'):
activation = self.activation.__name__.upper()
else:
activation = 'TANH'
if hasattr(self, 'reset_after') and not self.reset_after:
reset_after = 0
else:
reset_after = 1
neurons = weights[0].shape[1]//3
max_rnn_neurons = max(max_rnn_neurons, neurons)
f.write('const GRULayer {} = {{\n {}_bias,\n {}_weights,\n {}_recurrent_weights,\n {}, {}, ACTIVATION_{}, {}\n}};\n\n'
.format(name, name, name, name, weights[0].shape[0], weights[0].shape[1]//3, activation, reset_after))
hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3))
hf.write('#define {}_STATE_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3))
hf.write('extern const GRULayer {};\n\n'.format(name));
return True
GRU.dump_layer = dump_gru_layer
def dump_dense_layer_impl(name, weights, bias, activation, f, hf):
printVector(f, weights, name + '_weights')
printVector(f, bias, name + '_bias')
f.write('const DenseLayer {} = {{\n {}_bias,\n {}_weights,\n {}, {}, ACTIVATION_{}\n}};\n\n'
.format(name, name, name, weights.shape[0], weights.shape[1], activation))
hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights.shape[1]))
hf.write('extern const DenseLayer {};\n\n'.format(name));
def dump_dense_layer(self, f, hf):
name = self.name
print("printing layer " + name + " of type " + self.__class__.__name__)
weights = self.get_weights()
activation = self.activation.__name__.upper()
dump_dense_layer_impl(name, weights[0], weights[1], activation, f, hf)
return False
Dense.dump_layer = dump_dense_layer
def dump_mdense_layer(self, f, hf):
global max_mdense_tmp
name = self.name
print("printing layer " + name + " of type " + self.__class__.__name__)
weights = self.get_weights()
printVector(f, np.transpose(weights[0], (1, 2, 0)), name + '_weights')
printVector(f, np.transpose(weights[1], (1, 0)), name + '_bias')
printVector(f, np.transpose(weights[2], (1, 0)), name + '_factor')
activation = self.activation.__name__.upper()
max_mdense_tmp = max(max_mdense_tmp, weights[0].shape[0]*weights[0].shape[2])
f.write('const MDenseLayer {} = {{\n {}_bias,\n {}_weights,\n {}_factor,\n {}, {}, {}, ACTIVATION_{}\n}};\n\n'
.format(name, name, name, name, weights[0].shape[1], weights[0].shape[0], weights[0].shape[2], activation))
hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights[0].shape[0]))
hf.write('extern const MDenseLayer {};\n\n'.format(name));
return False
MDense.dump_layer = dump_mdense_layer
def dump_conv1d_layer(self, f, hf):
global max_conv_inputs
name = self.name
print("printing layer " + name + " of type " + self.__class__.__name__)
weights = self.get_weights()
printVector(f, weights[0], name + '_weights')
printVector(f, weights[-1], name + '_bias')
activation = self.activation.__name__.upper()
max_conv_inputs = max(max_conv_inputs, weights[0].shape[1]*weights[0].shape[0])
f.write('const Conv1DLayer {} = {{\n {}_bias,\n {}_weights,\n {}, {}, {}, ACTIVATION_{}\n}};\n\n'
.format(name, name, name, weights[0].shape[1], weights[0].shape[0], weights[0].shape[2], activation))
hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights[0].shape[2]))
hf.write('#define {}_STATE_SIZE ({}*{})\n'.format(name.upper(), weights[0].shape[1], (weights[0].shape[0]-1)))
hf.write('#define {}_DELAY {}\n'.format(name.upper(), (weights[0].shape[0]-1)//2))
hf.write('extern const Conv1DLayer {};\n\n'.format(name));
return True
Conv1D.dump_layer = dump_conv1d_layer
def dump_embedding_layer_impl(name, weights, f, hf):
printVector(f, weights, name + '_weights')
f.write('const EmbeddingLayer {} = {{\n {}_weights,\n {}, {}\n}};\n\n'
.format(name, name, weights.shape[0], weights.shape[1]))
hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights.shape[1]))
hf.write('extern const EmbeddingLayer {};\n\n'.format(name));
def dump_embedding_layer(self, f, hf):
name = self.name
print("printing layer " + name + " of type " + self.__class__.__name__)
weights = self.get_weights()[0]
dump_embedding_layer_impl(name, weights, f, hf)
return False
Embedding.dump_layer = dump_embedding_layer
model, _, _ = lpcnet.new_lpcnet_model(rnn_units1=384)
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'])
#model.summary()
model.load_weights(sys.argv[1])
if len(sys.argv) > 2:
cfile = sys.argv[2];
hfile = sys.argv[3];
else:
cfile = 'nnet_data.c'
hfile = 'nnet_data.h'
f = open(cfile, 'w')
hf = open(hfile, 'w')
f.write('/*This file is automatically generated from a Keras model*/\n\n')
f.write('#ifdef HAVE_CONFIG_H\n#include "config.h"\n#endif\n\n#include "nnet.h"\n#include "{}"\n\n'.format(hfile))
hf.write('/*This file is automatically generated from a Keras model*/\n\n')
hf.write('#ifndef RNN_DATA_H\n#define RNN_DATA_H\n\n#include "nnet.h"\n\n')
embed_size = lpcnet.embed_size
E = model.get_layer('embed_sig').get_weights()[0]
W = model.get_layer('gru_a').get_weights()[0][:embed_size,:]
dump_embedding_layer_impl('gru_a_embed_sig', np.dot(E, W), f, hf)
W = model.get_layer('gru_a').get_weights()[0][embed_size:2*embed_size,:]
dump_embedding_layer_impl('gru_a_embed_pred', np.dot(E, W), f, hf)
W = model.get_layer('gru_a').get_weights()[0][2*embed_size:3*embed_size,:]
dump_embedding_layer_impl('gru_a_embed_exc', np.dot(E, W), f, hf)
W = model.get_layer('gru_a').get_weights()[0][3*embed_size:,:]
#FIXME: dump only half the biases
b = model.get_layer('gru_a').get_weights()[2]
dump_dense_layer_impl('gru_a_dense_feature', W, b, 'LINEAR', f, hf)
layer_list = []
for i, layer in enumerate(model.layers):
if layer.dump_layer(f, hf):
layer_list.append(layer.name)
dump_sparse_gru(model.get_layer('gru_a'), f, hf)
hf.write('#define MAX_RNN_NEURONS {}\n\n'.format(max_rnn_neurons))
hf.write('#define MAX_CONV_INPUTS {}\n\n'.format(max_conv_inputs))
hf.write('#define MAX_MDENSE_TMP {}\n\n'.format(max_mdense_tmp))
hf.write('typedef struct {\n')
for i, name in enumerate(layer_list):
hf.write(' float {}_state[{}_STATE_SIZE];\n'.format(name, name.upper()))
hf.write('} NNetState;\n')
hf.write('\n\n#endif\n')
f.close()
hf.close()

172
dnn/training_tf2/lpcnet.py Normal file
View file

@ -0,0 +1,172 @@
#!/usr/bin/python3
'''Copyright (c) 2018 Mozilla
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
'''
import math
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, GRU, Dense, Embedding, Reshape, Concatenate, Lambda, Conv1D, Multiply, Add, Bidirectional, MaxPooling1D, Activation
from tensorflow.keras import backend as K
from tensorflow.keras.initializers import Initializer
from tensorflow.keras.callbacks import Callback
from mdense import MDense
import numpy as np
import h5py
import sys
frame_size = 160
pcm_bits = 8
embed_size = 128
pcm_levels = 2**pcm_bits
class Sparsify(Callback):
def __init__(self, t_start, t_end, interval, density):
super(Sparsify, self).__init__()
self.batch = 0
self.t_start = t_start
self.t_end = t_end
self.interval = interval
self.final_density = density
def on_batch_end(self, batch, logs=None):
#print("batch number", self.batch)
self.batch += 1
if self.batch < self.t_start or ((self.batch-self.t_start) % self.interval != 0 and self.batch < self.t_end):
#print("don't constrain");
pass
else:
#print("constrain");
layer = self.model.get_layer('gru_a')
w = layer.get_weights()
p = w[1]
nb = p.shape[1]//p.shape[0]
N = p.shape[0]
#print("nb = ", nb, ", N = ", N);
#print(p.shape)
#print ("density = ", density)
for k in range(nb):
density = self.final_density[k]
if self.batch < self.t_end:
r = 1 - (self.batch-self.t_start)/(self.t_end - self.t_start)
density = 1 - (1-self.final_density[k])*(1 - r*r*r)
A = p[:, k*N:(k+1)*N]
A = A - np.diag(np.diag(A))
#A = np.transpose(A, (1, 0))
L=np.reshape(A, (N, N//16, 16))
S=np.sum(L*L, axis=-1)
SS=np.sort(np.reshape(S, (-1,)))
thresh = SS[round(N*N//16*(1-density))]
mask = (S>=thresh).astype('float32');
mask = np.repeat(mask, 16, axis=1)
mask = np.minimum(1, mask + np.diag(np.ones((N,))))
#mask = np.transpose(mask, (1, 0))
p[:, k*N:(k+1)*N] = p[:, k*N:(k+1)*N]*mask
#print(thresh, np.mean(mask))
w[1] = p
layer.set_weights(w)
class PCMInit(Initializer):
def __init__(self, gain=.1, seed=None):
self.gain = gain
self.seed = seed
def __call__(self, shape, dtype=None):
num_rows = 1
for dim in shape[:-1]:
num_rows *= dim
num_cols = shape[-1]
flat_shape = (num_rows, num_cols)
if self.seed is not None:
np.random.seed(self.seed)
a = np.random.uniform(-1.7321, 1.7321, flat_shape)
#a[:,0] = math.sqrt(12)*np.arange(-.5*num_rows+.5,.5*num_rows-.4)/num_rows
#a[:,1] = .5*a[:,0]*a[:,0]*a[:,0]
a = a + np.reshape(math.sqrt(12)*np.arange(-.5*num_rows+.5,.5*num_rows-.4)/num_rows, (num_rows, 1))
return self.gain * a
def get_config(self):
return {
'gain': self.gain,
'seed': self.seed
}
def new_lpcnet_model(rnn_units1=384, rnn_units2=16, nb_used_features = 38, training=False, adaptation=False):
pcm = Input(shape=(None, 3))
feat = Input(shape=(None, nb_used_features))
pitch = Input(shape=(None, 1))
dec_feat = Input(shape=(None, 128))
dec_state1 = Input(shape=(rnn_units1,))
dec_state2 = Input(shape=(rnn_units2,))
padding = 'valid' if training else 'same'
fconv1 = Conv1D(128, 3, padding=padding, activation='tanh', name='feature_conv1')
fconv2 = Conv1D(128, 3, padding=padding, activation='tanh', name='feature_conv2')
embed = Embedding(256, embed_size, embeddings_initializer=PCMInit(), name='embed_sig')
cpcm = Reshape((-1, embed_size*3))(embed(pcm))
pembed = Embedding(256, 64, name='embed_pitch')
cat_feat = Concatenate()([feat, Reshape((-1, 64))(pembed(pitch))])
cfeat = fconv2(fconv1(cat_feat))
fdense1 = Dense(128, activation='tanh', name='feature_dense1')
fdense2 = Dense(128, activation='tanh', name='feature_dense2')
cfeat = fdense2(fdense1(cfeat))
rep = Lambda(lambda x: K.repeat_elements(x, frame_size, 1))
rnn = GRU(rnn_units1, return_sequences=True, return_state=True, recurrent_activation="sigmoid", reset_after='true', name='gru_a')
rnn2 = GRU(rnn_units2, return_sequences=True, return_state=True, recurrent_activation="sigmoid", reset_after='true', name='gru_b')
rnn_in = Concatenate()([cpcm, rep(cfeat)])
md = MDense(pcm_levels, activation='softmax', name='dual_fc')
gru_out1, _ = rnn(rnn_in)
gru_out2, _ = rnn2(Concatenate()([gru_out1, rep(cfeat)]))
ulaw_prob = md(gru_out2)
if adaptation:
rnn.trainable=False
rnn2.trainable=False
md.trainable=False
embed.Trainable=False
model = Model([pcm, feat, pitch], ulaw_prob)
model.rnn_units1 = rnn_units1
model.rnn_units2 = rnn_units2
model.nb_used_features = nb_used_features
model.frame_size = frame_size
encoder = Model([feat, pitch], cfeat)
dec_rnn_in = Concatenate()([cpcm, dec_feat])
dec_gru_out1, state1 = rnn(dec_rnn_in, initial_state=dec_state1)
dec_gru_out2, state2 = rnn2(Concatenate()([dec_gru_out1, dec_feat]), initial_state=dec_state2)
dec_ulaw_prob = md(dec_gru_out2)
decoder = Model([pcm, dec_feat, dec_state1, dec_state2], [dec_ulaw_prob, state1, state2])
return model, encoder, decoder

View file

@ -0,0 +1,95 @@
from tensorflow.keras import backend as K
from tensorflow.keras.layers import Layer, InputSpec
from tensorflow.keras import activations
from tensorflow.keras import initializers, regularizers, constraints
import numpy as np
import math
class MDense(Layer):
def __init__(self, outputs,
channels=2,
activation=None,
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
**kwargs):
if 'input_shape' not in kwargs and 'input_dim' in kwargs:
kwargs['input_shape'] = (kwargs.pop('input_dim'),)
super(MDense, self).__init__(**kwargs)
self.units = outputs
self.channels = channels
self.activation = activations.get(activation)
self.use_bias = use_bias
self.kernel_initializer = initializers.get(kernel_initializer)
self.bias_initializer = initializers.get(bias_initializer)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.bias_regularizer = regularizers.get(bias_regularizer)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint)
self.bias_constraint = constraints.get(bias_constraint)
self.input_spec = InputSpec(min_ndim=2)
self.supports_masking = True
def build(self, input_shape):
assert len(input_shape) >= 2
input_dim = input_shape[-1]
self.kernel = self.add_weight(shape=(self.units, input_dim, self.channels),
initializer=self.kernel_initializer,
name='kernel',
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)
if self.use_bias:
self.bias = self.add_weight(shape=(self.units, self.channels),
initializer=self.bias_initializer,
name='bias',
regularizer=self.bias_regularizer,
constraint=self.bias_constraint)
else:
self.bias = None
self.factor = self.add_weight(shape=(self.units, self.channels),
initializer='ones',
name='factor',
regularizer=self.bias_regularizer,
constraint=self.bias_constraint)
self.input_spec = InputSpec(min_ndim=2, axes={-1: input_dim})
self.built = True
def call(self, inputs):
output = K.dot(inputs, self.kernel)
if self.use_bias:
output = output + self.bias
output = K.tanh(output) * self.factor
output = K.sum(output, axis=-1)
if self.activation is not None:
output = self.activation(output)
return output
def compute_output_shape(self, input_shape):
assert input_shape and len(input_shape) >= 2
assert input_shape[-1]
output_shape = list(input_shape)
output_shape[-1] = self.units
return tuple(output_shape)
def get_config(self):
config = {
'units': self.units,
'activation': activations.serialize(self.activation),
'use_bias': self.use_bias,
'kernel_initializer': initializers.serialize(self.kernel_initializer),
'bias_initializer': initializers.serialize(self.bias_initializer),
'kernel_regularizer': regularizers.serialize(self.kernel_regularizer),
'bias_regularizer': regularizers.serialize(self.bias_regularizer),
'activity_regularizer': regularizers.serialize(self.activity_regularizer),
'kernel_constraint': constraints.serialize(self.kernel_constraint),
'bias_constraint': constraints.serialize(self.bias_constraint)
}
base_config = super(MDense, self).get_config()
return dict(list(base_config.items()) + list(config.items()))

124
dnn/training_tf2/train_lpcnet.py Executable file
View file

@ -0,0 +1,124 @@
#!/usr/bin/python3
'''Copyright (c) 2018 Mozilla
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
'''
# Train a LPCNet model (note not a Wavenet model)
import lpcnet
import sys
import numpy as np
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import ModelCheckpoint
from ulaw import ulaw2lin, lin2ulaw
import tensorflow.keras.backend as K
import h5py
import tensorflow as tf
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
try:
tf.config.experimental.set_virtual_device_configuration(gpus[0], [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=5120)])
except RuntimeError as e:
print(e)
nb_epochs = 120
# Try reducing batch_size if you run out of memory on your GPU
batch_size = 64
model, _, _ = lpcnet.new_lpcnet_model(training=True)
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'])
model.summary()
feature_file = sys.argv[1]
pcm_file = sys.argv[2] # 16 bit unsigned short PCM samples
frame_size = model.frame_size
nb_features = 55
nb_used_features = model.nb_used_features
feature_chunk_size = 15
pcm_chunk_size = frame_size*feature_chunk_size
# u for unquantised, load 16 bit PCM samples and convert to mu-law
data = np.fromfile(pcm_file, dtype='uint8')
nb_frames = len(data)//(4*pcm_chunk_size)
features = np.fromfile(feature_file, dtype='float32')
# limit to discrete number of frames
data = data[:nb_frames*4*pcm_chunk_size]
features = features[:nb_frames*feature_chunk_size*nb_features]
features = np.reshape(features, (nb_frames*feature_chunk_size, nb_features))
sig = np.reshape(data[0::4], (nb_frames, pcm_chunk_size, 1))
pred = np.reshape(data[1::4], (nb_frames, pcm_chunk_size, 1))
in_exc = np.reshape(data[2::4], (nb_frames, pcm_chunk_size, 1))
out_exc = np.reshape(data[3::4], (nb_frames, pcm_chunk_size, 1))
del data
print("ulaw std = ", np.std(out_exc))
features = np.reshape(features, (nb_frames, feature_chunk_size, nb_features))
features = features[:, :, :nb_used_features]
features[:,:,18:36] = 0
fpad1 = np.concatenate([features[0:1, 0:2, :], features[:-1, -2:, :]], axis=0)
fpad2 = np.concatenate([features[1:, :2, :], features[0:1, -2:, :]], axis=0)
features = np.concatenate([fpad1, features, fpad2], axis=1)
periods = (.1 + 50*features[:,:,36:37]+100).astype('int16')
#periods = np.minimum(periods, 255)
in_data = np.concatenate([sig, pred, in_exc], axis=-1)
del sig
del pred
del in_exc
# dump models to disk as we go
checkpoint = ModelCheckpoint('lpcnet32c_384_10_G16_{epoch:02d}.h5')
#Set this to True to adapt an existing model (e.g. on new data)
adaptation = False
if adaptation:
#Adapting from an existing model
model.load_weights('lpcnet24c_384_10_G16_120.h5')
sparsify = lpcnet.Sparsify(0, 0, 1, (0.05, 0.05, 0.2))
lr = 0.0001
decay = 0
else:
#Training from scratch
sparsify = lpcnet.Sparsify(2000, 40000, 400, (0.05, 0.05, 0.2))
lr = 0.001
decay = 5e-5
model.compile(optimizer=Adam(lr, decay=decay, beta_2=0.99), loss='sparse_categorical_crossentropy')
model.save_weights('lpcnet32c_384_10_G16_00.h5');
model.fit([in_data, features, periods], out_exc, batch_size=batch_size, epochs=nb_epochs, validation_split=0.0, callbacks=[checkpoint, sparsify])

19
dnn/training_tf2/ulaw.py Normal file
View file

@ -0,0 +1,19 @@
import numpy as np
import math
scale = 255.0/32768.0
scale_1 = 32768.0/255.0
def ulaw2lin(u):
u = u - 128
s = np.sign(u)
u = np.abs(u)
return s*scale_1*(np.exp(u/128.*math.log(256))-1)
def lin2ulaw(x):
s = np.sign(x)
x = np.abs(x)
u = (s*(128*np.log(1+scale*x)/math.log(256)))
u = np.clip(128 + np.round(u), 0, 255)
return u.astype('int16')