mirror of
https://github.com/xiph/opus.git
synced 2025-05-30 15:17:42 +00:00
Convert training code to Tensorflow 2
This commit is contained in:
parent
88a7878fdb
commit
90fec91b12
5 changed files with 677 additions and 0 deletions
124
dnn/training_tf2/train_lpcnet.py
Executable file
124
dnn/training_tf2/train_lpcnet.py
Executable file
|
@ -0,0 +1,124 @@
|
|||
#!/usr/bin/python3
|
||||
'''Copyright (c) 2018 Mozilla
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions
|
||||
are met:
|
||||
|
||||
- Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
- Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in the
|
||||
documentation and/or other materials provided with the distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
|
||||
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
'''
|
||||
|
||||
# Train a LPCNet model (note not a Wavenet model)
|
||||
|
||||
import lpcnet
|
||||
import sys
|
||||
import numpy as np
|
||||
from tensorflow.keras.optimizers import Adam
|
||||
from tensorflow.keras.callbacks import ModelCheckpoint
|
||||
from ulaw import ulaw2lin, lin2ulaw
|
||||
import tensorflow.keras.backend as K
|
||||
import h5py
|
||||
|
||||
import tensorflow as tf
|
||||
gpus = tf.config.experimental.list_physical_devices('GPU')
|
||||
if gpus:
|
||||
try:
|
||||
tf.config.experimental.set_virtual_device_configuration(gpus[0], [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=5120)])
|
||||
except RuntimeError as e:
|
||||
print(e)
|
||||
|
||||
nb_epochs = 120
|
||||
|
||||
# Try reducing batch_size if you run out of memory on your GPU
|
||||
batch_size = 64
|
||||
|
||||
model, _, _ = lpcnet.new_lpcnet_model(training=True)
|
||||
|
||||
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'])
|
||||
model.summary()
|
||||
|
||||
feature_file = sys.argv[1]
|
||||
pcm_file = sys.argv[2] # 16 bit unsigned short PCM samples
|
||||
frame_size = model.frame_size
|
||||
nb_features = 55
|
||||
nb_used_features = model.nb_used_features
|
||||
feature_chunk_size = 15
|
||||
pcm_chunk_size = frame_size*feature_chunk_size
|
||||
|
||||
# u for unquantised, load 16 bit PCM samples and convert to mu-law
|
||||
|
||||
data = np.fromfile(pcm_file, dtype='uint8')
|
||||
nb_frames = len(data)//(4*pcm_chunk_size)
|
||||
|
||||
features = np.fromfile(feature_file, dtype='float32')
|
||||
|
||||
# limit to discrete number of frames
|
||||
data = data[:nb_frames*4*pcm_chunk_size]
|
||||
features = features[:nb_frames*feature_chunk_size*nb_features]
|
||||
|
||||
features = np.reshape(features, (nb_frames*feature_chunk_size, nb_features))
|
||||
|
||||
sig = np.reshape(data[0::4], (nb_frames, pcm_chunk_size, 1))
|
||||
pred = np.reshape(data[1::4], (nb_frames, pcm_chunk_size, 1))
|
||||
in_exc = np.reshape(data[2::4], (nb_frames, pcm_chunk_size, 1))
|
||||
out_exc = np.reshape(data[3::4], (nb_frames, pcm_chunk_size, 1))
|
||||
del data
|
||||
|
||||
print("ulaw std = ", np.std(out_exc))
|
||||
|
||||
features = np.reshape(features, (nb_frames, feature_chunk_size, nb_features))
|
||||
features = features[:, :, :nb_used_features]
|
||||
features[:,:,18:36] = 0
|
||||
|
||||
fpad1 = np.concatenate([features[0:1, 0:2, :], features[:-1, -2:, :]], axis=0)
|
||||
fpad2 = np.concatenate([features[1:, :2, :], features[0:1, -2:, :]], axis=0)
|
||||
features = np.concatenate([fpad1, features, fpad2], axis=1)
|
||||
|
||||
|
||||
periods = (.1 + 50*features[:,:,36:37]+100).astype('int16')
|
||||
#periods = np.minimum(periods, 255)
|
||||
|
||||
in_data = np.concatenate([sig, pred, in_exc], axis=-1)
|
||||
|
||||
del sig
|
||||
del pred
|
||||
del in_exc
|
||||
|
||||
# dump models to disk as we go
|
||||
checkpoint = ModelCheckpoint('lpcnet32c_384_10_G16_{epoch:02d}.h5')
|
||||
|
||||
#Set this to True to adapt an existing model (e.g. on new data)
|
||||
adaptation = False
|
||||
|
||||
if adaptation:
|
||||
#Adapting from an existing model
|
||||
model.load_weights('lpcnet24c_384_10_G16_120.h5')
|
||||
sparsify = lpcnet.Sparsify(0, 0, 1, (0.05, 0.05, 0.2))
|
||||
lr = 0.0001
|
||||
decay = 0
|
||||
else:
|
||||
#Training from scratch
|
||||
sparsify = lpcnet.Sparsify(2000, 40000, 400, (0.05, 0.05, 0.2))
|
||||
lr = 0.001
|
||||
decay = 5e-5
|
||||
|
||||
model.compile(optimizer=Adam(lr, decay=decay, beta_2=0.99), loss='sparse_categorical_crossentropy')
|
||||
model.save_weights('lpcnet32c_384_10_G16_00.h5');
|
||||
model.fit([in_data, features, periods], out_exc, batch_size=batch_size, epochs=nb_epochs, validation_split=0.0, callbacks=[checkpoint, sparsify])
|
Loading…
Add table
Add a link
Reference in a new issue