mirror of
https://github.com/xiph/opus.git
synced 2025-06-02 16:47:42 +00:00
decoder wip
This commit is contained in:
parent
06511ba5a4
commit
824dbecaec
3 changed files with 82 additions and 8 deletions
|
@ -19,6 +19,7 @@ def new_wavernn_model():
|
|||
pcm = Input(shape=(None, 1))
|
||||
pitch = Input(shape=(None, 1))
|
||||
feat = Input(shape=(None, nb_used_features))
|
||||
dec_feat = Input(shape=(None, 32))
|
||||
|
||||
conv1 = Conv1D(16, 7, padding='causal')
|
||||
pconv1 = Conv1D(16, 5, padding='same')
|
||||
|
@ -26,7 +27,7 @@ def new_wavernn_model():
|
|||
fconv1 = Conv1D(128, 3, padding='same')
|
||||
fconv2 = Conv1D(32, 3, padding='same')
|
||||
|
||||
if True:
|
||||
if False:
|
||||
cpcm = conv1(pcm)
|
||||
cpitch = pconv2(pconv1(pitch))
|
||||
else:
|
||||
|
@ -37,10 +38,18 @@ def new_wavernn_model():
|
|||
|
||||
rep = Lambda(lambda x: K.repeat_elements(x, 160, 1))
|
||||
|
||||
rnn = CuDNNGRU(rnn_units, return_sequences=True)
|
||||
rnn = CuDNNGRU(rnn_units, return_sequences=True, return_state=True)
|
||||
rnn_in = Concatenate()([cpcm, cpitch, rep(cfeat)])
|
||||
md = MDense(pcm_levels, activation='softmax')
|
||||
ulaw_prob = md(rnn(rnn_in))
|
||||
gru_out, state = rnn(rnn_in)
|
||||
ulaw_prob = md(gru_out)
|
||||
|
||||
model = Model([pcm, pitch, feat], ulaw_prob)
|
||||
return model
|
||||
encoder = Model(feat, cfeat)
|
||||
|
||||
dec_rnn_in = Concatenate()([cpcm, cpitch, dec_feat])
|
||||
dec_gru_out, state = rnn(dec_rnn_in)
|
||||
dec_ulaw_prob = md(dec_gru_out)
|
||||
|
||||
decoder = Model([pcm, pitch, dec_feat], [dec_ulaw_prob, state])
|
||||
return model, encoder, decoder
|
||||
|
|
64
dnn/test_lpcnet.py
Executable file
64
dnn/test_lpcnet.py
Executable file
|
@ -0,0 +1,64 @@
|
|||
#!/usr/bin/python3
|
||||
|
||||
import lpcnet
|
||||
import sys
|
||||
import numpy as np
|
||||
from keras.optimizers import Adam
|
||||
from keras.callbacks import ModelCheckpoint
|
||||
from ulaw import ulaw2lin, lin2ulaw
|
||||
import keras.backend as K
|
||||
import h5py
|
||||
from adadiff import Adadiff
|
||||
|
||||
#import tensorflow as tf
|
||||
#from keras.backend.tensorflow_backend import set_session
|
||||
#config = tf.ConfigProto()
|
||||
#config.gpu_options.per_process_gpu_memory_fraction = 0.28
|
||||
#set_session(tf.Session(config=config))
|
||||
|
||||
nb_epochs = 40
|
||||
batch_size = 64
|
||||
|
||||
model, enc, dec = lpcnet.new_wavernn_model()
|
||||
model.compile(optimizer=Adadiff(), loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'])
|
||||
model.summary()
|
||||
|
||||
pcmfile = sys.argv[1]
|
||||
feature_file = sys.argv[2]
|
||||
frame_size = 160
|
||||
nb_features = 54
|
||||
nb_used_features = lpcnet.nb_used_features
|
||||
feature_chunk_size = 15
|
||||
pcm_chunk_size = frame_size*feature_chunk_size
|
||||
|
||||
data = np.fromfile(pcmfile, dtype='int8')
|
||||
nb_frames = len(data)//pcm_chunk_size
|
||||
|
||||
features = np.fromfile(feature_file, dtype='float32')
|
||||
|
||||
data = data[:nb_frames*pcm_chunk_size]
|
||||
features = features[:nb_frames*feature_chunk_size*nb_features]
|
||||
|
||||
in_data = np.concatenate([data[0:1], data[:-1]])/16.;
|
||||
|
||||
features = np.reshape(features, (nb_frames, feature_chunk_size, nb_features))
|
||||
|
||||
in_data = np.reshape(in_data, (nb_frames*pcm_chunk_size, 1))
|
||||
out_data = np.reshape(data, (nb_frames*pcm_chunk_size, 1))
|
||||
|
||||
|
||||
model.load_weights('lpcnet1h_30.h5')
|
||||
|
||||
order = 16
|
||||
|
||||
pcm = 0.*out_data
|
||||
for c in range(1, nb_frames):
|
||||
for fr in range(1, feature_chunk_size):
|
||||
f = c*feature_chunk_size + fr
|
||||
a = features[c, fr, nb_used_features+1:]
|
||||
#print(a)
|
||||
gain = 1;
|
||||
for i in range(frame_size):
|
||||
pcm[f*frame_size + i, 0] = gain*out_data[f*frame_size + i, 0] - sum(a*pcm[f*frame_size + i - 1:f*frame_size + i - order-1:-1, 0])
|
||||
print(pcm[f*frame_size + i, 0])
|
||||
|
|
@ -8,18 +8,19 @@ from keras.callbacks import ModelCheckpoint
|
|||
from ulaw import ulaw2lin, lin2ulaw
|
||||
import keras.backend as K
|
||||
import h5py
|
||||
from adadiff import Adadiff
|
||||
|
||||
import tensorflow as tf
|
||||
from keras.backend.tensorflow_backend import set_session
|
||||
config = tf.ConfigProto()
|
||||
config.gpu_options.per_process_gpu_memory_fraction = 0.44
|
||||
config.gpu_options.per_process_gpu_memory_fraction = 0.28
|
||||
set_session(tf.Session(config=config))
|
||||
|
||||
nb_epochs = 40
|
||||
batch_size = 64
|
||||
|
||||
model = lpcnet.new_wavernn_model()
|
||||
model.compile(optimizer=Adam(0.0008), loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'])
|
||||
model.compile(optimizer=Adadiff(), loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'])
|
||||
model.summary()
|
||||
|
||||
pcmfile = sys.argv[1]
|
||||
|
@ -62,8 +63,8 @@ features = features[:, :, :nb_used_features]
|
|||
# f.create_dataset('data', data=in_data[:50000, :, :])
|
||||
# f.create_dataset('feat', data=features[:50000, :, :])
|
||||
|
||||
checkpoint = ModelCheckpoint('lpcnet1g_{epoch:02d}.h5')
|
||||
checkpoint = ModelCheckpoint('lpcnet1k_{epoch:02d}.h5')
|
||||
|
||||
#model.load_weights('wavernn1c_01.h5')
|
||||
model.compile(optimizer=Adam(0.002, amsgrad=True, decay=2e-4), loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'])
|
||||
model.compile(optimizer=Adadiff(), loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'])
|
||||
model.fit([in_data, in_pitch, features], out_data, batch_size=batch_size, epochs=30, validation_split=0.2, callbacks=[checkpoint])
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue