decoder wip

This commit is contained in:
Jean-Marc Valin 2018-07-09 18:20:52 -04:00
parent 06511ba5a4
commit 824dbecaec
3 changed files with 82 additions and 8 deletions

View file

@ -19,6 +19,7 @@ def new_wavernn_model():
pcm = Input(shape=(None, 1))
pitch = Input(shape=(None, 1))
feat = Input(shape=(None, nb_used_features))
dec_feat = Input(shape=(None, 32))
conv1 = Conv1D(16, 7, padding='causal')
pconv1 = Conv1D(16, 5, padding='same')
@ -26,7 +27,7 @@ def new_wavernn_model():
fconv1 = Conv1D(128, 3, padding='same')
fconv2 = Conv1D(32, 3, padding='same')
if True:
if False:
cpcm = conv1(pcm)
cpitch = pconv2(pconv1(pitch))
else:
@ -37,10 +38,18 @@ def new_wavernn_model():
rep = Lambda(lambda x: K.repeat_elements(x, 160, 1))
rnn = CuDNNGRU(rnn_units, return_sequences=True)
rnn = CuDNNGRU(rnn_units, return_sequences=True, return_state=True)
rnn_in = Concatenate()([cpcm, cpitch, rep(cfeat)])
md = MDense(pcm_levels, activation='softmax')
ulaw_prob = md(rnn(rnn_in))
gru_out, state = rnn(rnn_in)
ulaw_prob = md(gru_out)
model = Model([pcm, pitch, feat], ulaw_prob)
return model
encoder = Model(feat, cfeat)
dec_rnn_in = Concatenate()([cpcm, cpitch, dec_feat])
dec_gru_out, state = rnn(dec_rnn_in)
dec_ulaw_prob = md(dec_gru_out)
decoder = Model([pcm, pitch, dec_feat], [dec_ulaw_prob, state])
return model, encoder, decoder

64
dnn/test_lpcnet.py Executable file
View file

@ -0,0 +1,64 @@
#!/usr/bin/python3
import lpcnet
import sys
import numpy as np
from keras.optimizers import Adam
from keras.callbacks import ModelCheckpoint
from ulaw import ulaw2lin, lin2ulaw
import keras.backend as K
import h5py
from adadiff import Adadiff
#import tensorflow as tf
#from keras.backend.tensorflow_backend import set_session
#config = tf.ConfigProto()
#config.gpu_options.per_process_gpu_memory_fraction = 0.28
#set_session(tf.Session(config=config))
nb_epochs = 40
batch_size = 64
model, enc, dec = lpcnet.new_wavernn_model()
model.compile(optimizer=Adadiff(), loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'])
model.summary()
pcmfile = sys.argv[1]
feature_file = sys.argv[2]
frame_size = 160
nb_features = 54
nb_used_features = lpcnet.nb_used_features
feature_chunk_size = 15
pcm_chunk_size = frame_size*feature_chunk_size
data = np.fromfile(pcmfile, dtype='int8')
nb_frames = len(data)//pcm_chunk_size
features = np.fromfile(feature_file, dtype='float32')
data = data[:nb_frames*pcm_chunk_size]
features = features[:nb_frames*feature_chunk_size*nb_features]
in_data = np.concatenate([data[0:1], data[:-1]])/16.;
features = np.reshape(features, (nb_frames, feature_chunk_size, nb_features))
in_data = np.reshape(in_data, (nb_frames*pcm_chunk_size, 1))
out_data = np.reshape(data, (nb_frames*pcm_chunk_size, 1))
model.load_weights('lpcnet1h_30.h5')
order = 16
pcm = 0.*out_data
for c in range(1, nb_frames):
for fr in range(1, feature_chunk_size):
f = c*feature_chunk_size + fr
a = features[c, fr, nb_used_features+1:]
#print(a)
gain = 1;
for i in range(frame_size):
pcm[f*frame_size + i, 0] = gain*out_data[f*frame_size + i, 0] - sum(a*pcm[f*frame_size + i - 1:f*frame_size + i - order-1:-1, 0])
print(pcm[f*frame_size + i, 0])

View file

@ -8,18 +8,19 @@ from keras.callbacks import ModelCheckpoint
from ulaw import ulaw2lin, lin2ulaw
import keras.backend as K
import h5py
from adadiff import Adadiff
import tensorflow as tf
from keras.backend.tensorflow_backend import set_session
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.44
config.gpu_options.per_process_gpu_memory_fraction = 0.28
set_session(tf.Session(config=config))
nb_epochs = 40
batch_size = 64
model = lpcnet.new_wavernn_model()
model.compile(optimizer=Adam(0.0008), loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'])
model.compile(optimizer=Adadiff(), loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'])
model.summary()
pcmfile = sys.argv[1]
@ -62,8 +63,8 @@ features = features[:, :, :nb_used_features]
# f.create_dataset('data', data=in_data[:50000, :, :])
# f.create_dataset('feat', data=features[:50000, :, :])
checkpoint = ModelCheckpoint('lpcnet1g_{epoch:02d}.h5')
checkpoint = ModelCheckpoint('lpcnet1k_{epoch:02d}.h5')
#model.load_weights('wavernn1c_01.h5')
model.compile(optimizer=Adam(0.002, amsgrad=True, decay=2e-4), loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'])
model.compile(optimizer=Adadiff(), loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'])
model.fit([in_data, in_pitch, features], out_data, batch_size=batch_size, epochs=30, validation_split=0.2, callbacks=[checkpoint])