audio-domain synthesis

This commit is contained in:
Jean-Marc Valin 2018-07-31 18:37:27 -04:00
parent 4cf2b2705a
commit 70789e6f43
4 changed files with 138 additions and 3 deletions

View file

@ -4,6 +4,7 @@ import math
from keras.models import Model
from keras.layers import Input, LSTM, CuDNNGRU, Dense, Embedding, Reshape, Concatenate, Lambda, Conv1D, Multiply, Bidirectional, MaxPooling1D, Activation
from keras import backend as K
from keras.initializers import Initializer
from mdense import MDense
import numpy as np
import h5py
@ -14,6 +15,30 @@ pcm_bits = 8
pcm_levels = 2**pcm_bits
nb_used_features = 38
class PCMInit(Initializer):
def __init__(self, gain=.1, seed=None):
self.gain = gain
self.seed = seed
def __call__(self, shape, dtype=None):
num_rows = 1
for dim in shape[:-1]:
num_rows *= dim
num_cols = shape[-1]
flat_shape = (num_rows, num_cols)
if self.seed is not None:
np.random.seed(self.seed)
a = np.random.uniform(-1.7321, 1.7321, flat_shape)
#a[:,0] = math.sqrt(12)*np.arange(-.5*num_rows+.5,.5*num_rows-.4)/num_rows
#a[:,1] = .5*a[:,0]*a[:,0]*a[:,0]
a = a + np.reshape(math.sqrt(12)*np.arange(-.5*num_rows+.5,.5*num_rows-.4)/num_rows, (num_rows, 1))
return self.gain * a
def get_config(self):
return {
'gain': self.gain,
'seed': self.seed
}
def new_wavernn_model():
pcm = Input(shape=(None, 1))
@ -35,6 +60,10 @@ def new_wavernn_model():
cpcm = pcm
cpitch = pitch
embed = Embedding(256, 128, embeddings_initializer=PCMInit())
cpcm = Reshape((-1, 128))(embed(pcm))
cfeat = fconv2(fconv1(feat))
rep = Lambda(lambda x: K.repeat_elements(x, 160, 1))