diff --git a/dnn/test_lpcnet.py b/dnn/test_lpcnet.py index e844e93a..1897f726 100755 --- a/dnn/test_lpcnet.py +++ b/dnn/test_lpcnet.py @@ -1,6 +1,5 @@ #!/usr/bin/python3 -import wavenet import lpcnet import sys import numpy as np diff --git a/dnn/train_lpcnet.py b/dnn/train_lpcnet.py index 152a3eff..02bc5fa3 100755 --- a/dnn/train_lpcnet.py +++ b/dnn/train_lpcnet.py @@ -4,7 +4,6 @@ # # Train a LPCNet model (note not a Wavenet model) -import wavenet import lpcnet import sys import numpy as np @@ -30,8 +29,6 @@ nb_epochs = 40 batch_size = 64 # Note we are creating a LPCNet model - -#model = wavenet.new_wavenet_model(fftnet=True) model, _, _ = lpcnet.new_wavernn_model() model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'])