mirror of
https://github.com/xiph/opus.git
synced 2025-06-01 16:17:42 +00:00
20-bit VQ
This commit is contained in:
parent
5be0e59ff0
commit
543ee94037
4 changed files with 469 additions and 4 deletions
399
dnn/ceps_vq_train.c
Normal file
399
dnn/ceps_vq_train.c
Normal file
|
@ -0,0 +1,399 @@
|
|||
|
||||
#include <valgrind/memcheck.h>
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <math.h>
|
||||
|
||||
#define MIN(a,b) ((a)<(b)?(a):(b))
|
||||
#define COEF 0.75f
|
||||
#define MAX_ENTRIES 16384
|
||||
|
||||
void compute_weights(const float *x, float *w, int ndim)
|
||||
{
|
||||
int i;
|
||||
w[0] = MIN(x[0], x[1]-x[0]);
|
||||
for (i=1;i<ndim-1;i++)
|
||||
w[i] = MIN(x[i]-x[i-1], x[i+1]-x[i]);
|
||||
w[ndim-1] = MIN(x[ndim-1]-x[ndim-2], M_PI-x[ndim-1]);
|
||||
|
||||
for (i=0;i<ndim;i++)
|
||||
w[i] = 1./(.01+w[i]);
|
||||
w[0]*=3;
|
||||
w[1]*=2;
|
||||
/*
|
||||
for (i=0;i<ndim;i++)
|
||||
w[i] = 1;*/
|
||||
}
|
||||
|
||||
int find_nearest(const float *codebook, int nb_entries, const float *x, int ndim, float *dist)
|
||||
{
|
||||
int i, j;
|
||||
float min_dist = 1e15;
|
||||
int nearest = 0;
|
||||
|
||||
for (i=0;i<nb_entries;i++)
|
||||
{
|
||||
float dist=0;
|
||||
for (j=0;j<ndim;j++)
|
||||
dist += (x[j]-codebook[i*ndim+j])*(x[j]-codebook[i*ndim+j]);
|
||||
if (dist<min_dist)
|
||||
{
|
||||
min_dist = dist;
|
||||
nearest = i;
|
||||
}
|
||||
}
|
||||
if (dist)
|
||||
*dist = min_dist;
|
||||
return nearest;
|
||||
}
|
||||
|
||||
int find_nearest_weighted(const float *codebook, int nb_entries, float *x, const float *w, int ndim)
|
||||
{
|
||||
int i, j;
|
||||
float min_dist = 1e15;
|
||||
int nearest = 0;
|
||||
|
||||
for (i=0;i<nb_entries;i++)
|
||||
{
|
||||
float dist=0;
|
||||
for (j=0;j<ndim;j++)
|
||||
dist += w[j]*(x[j]-codebook[i*ndim+j])*(x[j]-codebook[i*ndim+j]);
|
||||
if (dist<min_dist)
|
||||
{
|
||||
min_dist = dist;
|
||||
nearest = i;
|
||||
}
|
||||
}
|
||||
return nearest;
|
||||
}
|
||||
|
||||
int quantize_lsp(const float *x, const float *codebook1, const float *codebook2,
|
||||
const float *codebook3, int nb_entries, float *xq, int ndim)
|
||||
{
|
||||
int i, n1, n2, n3;
|
||||
float err[ndim], err2[ndim], err3[ndim];
|
||||
float w[ndim], w2[ndim], w3[ndim];
|
||||
|
||||
w[0] = MIN(x[0], x[1]-x[0]);
|
||||
for (i=1;i<ndim-1;i++)
|
||||
w[i] = MIN(x[i]-x[i-1], x[i+1]-x[i]);
|
||||
w[ndim-1] = MIN(x[ndim-1]-x[ndim-2], M_PI-x[ndim-1]);
|
||||
|
||||
/*
|
||||
for (i=0;i<ndim;i++)
|
||||
w[i] = 1./(.003+w[i]);
|
||||
w[0]*=3;
|
||||
w[1]*=2;*/
|
||||
compute_weights(x, w, ndim);
|
||||
|
||||
for (i=0;i<ndim;i++)
|
||||
err[i] = x[i]-COEF*xq[i];
|
||||
n1 = find_nearest(codebook1, nb_entries, err, ndim, NULL);
|
||||
|
||||
for (i=0;i<ndim;i++)
|
||||
{
|
||||
xq[i] = COEF*xq[i] + codebook1[ndim*n1+i];
|
||||
err[i] -= codebook1[ndim*n1+i];
|
||||
}
|
||||
for (i=0;i<ndim/2;i++)
|
||||
{
|
||||
err2[i] = err[2*i];
|
||||
err3[i] = err[2*i+1];
|
||||
w2[i] = w[2*i];
|
||||
w3[i] = w[2*i+1];
|
||||
}
|
||||
n2 = find_nearest_weighted(codebook2, nb_entries, err2, w2, ndim/2);
|
||||
n3 = find_nearest_weighted(codebook3, nb_entries, err3, w3, ndim/2);
|
||||
|
||||
for (i=0;i<ndim/2;i++)
|
||||
{
|
||||
xq[2*i] += codebook2[ndim*n2/2+i];
|
||||
xq[2*i+1] += codebook3[ndim*n3/2+i];
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
void split(float *codebook, int nb_entries, int ndim)
|
||||
{
|
||||
int i,j;
|
||||
for (i=0;i<nb_entries;i++)
|
||||
{
|
||||
for (j=0;j<ndim;j++)
|
||||
{
|
||||
float delta = .01*(rand()/(float)RAND_MAX-.5);
|
||||
codebook[i*ndim+j] += delta;
|
||||
codebook[(i+nb_entries)*ndim+j] = codebook[i*ndim+j] - delta;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void split1(float *codebook, int nb_entries, const float *data, int nb_vectors, int ndim)
|
||||
{
|
||||
int i,j;
|
||||
int nearest[nb_vectors];
|
||||
float dist[nb_entries];
|
||||
int count[nb_entries];
|
||||
int worst;
|
||||
for (i=0;i<nb_entries;i++)
|
||||
dist[i] = 0;
|
||||
for (i=0;i<nb_entries;i++)
|
||||
count[i]=0;
|
||||
for (i=0;i<nb_vectors;i++)
|
||||
{
|
||||
float d;
|
||||
nearest[i] = find_nearest(codebook, nb_entries, data+i*ndim, ndim, &d);
|
||||
dist[nearest[i]] += d;
|
||||
count[nearest[i]]++;
|
||||
}
|
||||
|
||||
worst=0;
|
||||
for (i=1;i<nb_entries;i++)
|
||||
{
|
||||
if (dist[i] > dist[worst])
|
||||
worst=i;
|
||||
}
|
||||
|
||||
for (j=0;j<ndim;j++)
|
||||
{
|
||||
float delta = .001*(rand()/(float)RAND_MAX-.5);
|
||||
codebook[worst*ndim+j] += delta;
|
||||
codebook[nb_entries*ndim+j] = codebook[worst*ndim+j] - delta;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
void update(float *data, int nb_vectors, float *codebook, int nb_entries, int ndim)
|
||||
{
|
||||
int i,j;
|
||||
int count[nb_entries];
|
||||
int nearest[nb_vectors];
|
||||
double err=0;
|
||||
|
||||
for (i=0;i<nb_entries;i++)
|
||||
count[i] = 0;
|
||||
|
||||
for (i=0;i<nb_vectors;i++)
|
||||
{
|
||||
float dist;
|
||||
nearest[i] = find_nearest(codebook, nb_entries, data+i*ndim, ndim, &dist);
|
||||
err += dist;
|
||||
}
|
||||
printf("RMS error = %f\n", sqrt(err/nb_vectors/ndim));
|
||||
for (i=0;i<nb_entries*ndim;i++)
|
||||
codebook[i] = 0;
|
||||
|
||||
for (i=0;i<nb_vectors;i++)
|
||||
{
|
||||
int n = nearest[i];
|
||||
count[n]++;
|
||||
for (j=0;j<ndim;j++)
|
||||
codebook[n*ndim+j] += data[i*ndim+j];
|
||||
}
|
||||
|
||||
float w2=0;
|
||||
for (i=0;i<nb_entries;i++)
|
||||
{
|
||||
for (j=0;j<ndim;j++)
|
||||
codebook[i*ndim+j] *= (1./count[i]);
|
||||
w2 += (count[i]/(float)nb_vectors)*(count[i]/(float)nb_vectors);
|
||||
}
|
||||
//fprintf(stderr, "%f / %d\n", 1./w2, nb_entries);
|
||||
}
|
||||
|
||||
void update_weighted(float *data, float *weight, int nb_vectors, float *codebook, int nb_entries, int ndim)
|
||||
{
|
||||
int i,j;
|
||||
float count[MAX_ENTRIES][ndim];
|
||||
int nearest[nb_vectors];
|
||||
|
||||
for (i=0;i<nb_entries;i++)
|
||||
for (j=0;j<ndim;j++)
|
||||
count[i][j] = 0;
|
||||
|
||||
for (i=0;i<nb_vectors;i++)
|
||||
{
|
||||
nearest[i] = find_nearest_weighted(codebook, nb_entries, data+i*ndim, weight+i*ndim, ndim);
|
||||
}
|
||||
for (i=0;i<nb_entries*ndim;i++)
|
||||
codebook[i] = 0;
|
||||
|
||||
for (i=0;i<nb_vectors;i++)
|
||||
{
|
||||
int n = nearest[i];
|
||||
for (j=0;j<ndim;j++)
|
||||
{
|
||||
float w = sqrt(weight[i*ndim+j]);
|
||||
count[n][j]+=w;
|
||||
codebook[n*ndim+j] += w*data[i*ndim+j];
|
||||
}
|
||||
}
|
||||
|
||||
//float w2=0;
|
||||
for (i=0;i<nb_entries;i++)
|
||||
{
|
||||
for (j=0;j<ndim;j++)
|
||||
codebook[i*ndim+j] *= (1./count[i][j]);
|
||||
//w2 += (count[i]/(float)nb_vectors)*(count[i]/(float)nb_vectors);
|
||||
}
|
||||
//fprintf(stderr, "%f / %d\n", 1./w2, nb_entries);
|
||||
}
|
||||
|
||||
void vq_train(float *data, int nb_vectors, float *codebook, int nb_entries, int ndim)
|
||||
{
|
||||
int i, j, e;
|
||||
e = 1;
|
||||
for (j=0;j<ndim;j++)
|
||||
codebook[j] = 0;
|
||||
for (i=0;i<nb_vectors;i++)
|
||||
for (j=0;j<ndim;j++)
|
||||
codebook[j] += data[i*ndim+j];
|
||||
for (j=0;j<ndim;j++)
|
||||
codebook[j] *= (1./nb_vectors);
|
||||
|
||||
|
||||
while (e< nb_entries)
|
||||
{
|
||||
#if 1
|
||||
split(codebook, e, ndim);
|
||||
e<<=1;
|
||||
#else
|
||||
split1(codebook, e, data, nb_vectors, ndim);
|
||||
e++;
|
||||
#endif
|
||||
fprintf(stderr, "%d\n", e);
|
||||
for (j=0;j<4;j++)
|
||||
update(data, nb_vectors, codebook, e, ndim);
|
||||
}
|
||||
for (j=0;j<ndim*2;j++)
|
||||
update(data, nb_vectors, codebook, e, ndim);
|
||||
}
|
||||
|
||||
void vq_train_weighted(float *data, float *weight, int nb_vectors, float *codebook, int nb_entries, int ndim)
|
||||
{
|
||||
int i, j, e;
|
||||
e = 1;
|
||||
for (j=0;j<ndim;j++)
|
||||
codebook[j] = 0;
|
||||
for (i=0;i<nb_vectors;i++)
|
||||
for (j=0;j<ndim;j++)
|
||||
codebook[j] += data[i*ndim+j];
|
||||
for (j=0;j<ndim;j++)
|
||||
codebook[j] *= (1./nb_vectors);
|
||||
|
||||
|
||||
while (e< nb_entries)
|
||||
{
|
||||
#if 0
|
||||
split(codebook, e, ndim);
|
||||
e<<=1;
|
||||
#else
|
||||
split1(codebook, e, data, nb_vectors, ndim);
|
||||
e++;
|
||||
#endif
|
||||
fprintf(stderr, "%d\n", e);
|
||||
for (j=0;j<ndim;j++)
|
||||
update_weighted(data, weight, nb_vectors, codebook, e, ndim);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int i,j;
|
||||
int nb_vectors, nb_entries, ndim, ndim0, total_dim;
|
||||
float *data, *pred, *codebook, *codebook2;
|
||||
float *delta;
|
||||
double err;
|
||||
FILE *fout;
|
||||
|
||||
ndim = atoi(argv[1]);
|
||||
ndim0 = ndim-1;
|
||||
total_dim = atoi(argv[2]);
|
||||
nb_vectors = atoi(argv[3]);
|
||||
nb_entries = 1<<atoi(argv[4]);
|
||||
|
||||
data = malloc((nb_vectors*ndim+total_dim)*sizeof(*data));
|
||||
pred = malloc(nb_vectors*ndim0*sizeof(*pred));
|
||||
codebook = malloc(nb_entries*ndim0*sizeof(*codebook));
|
||||
codebook2 = malloc(nb_entries*ndim0*sizeof(*codebook2));
|
||||
|
||||
for (i=0;i<nb_vectors;i++)
|
||||
{
|
||||
fread(&data[i*ndim], sizeof(float), total_dim, stdin);
|
||||
if (feof(stdin))
|
||||
break;
|
||||
}
|
||||
nb_vectors = i;
|
||||
VALGRIND_CHECK_MEM_IS_DEFINED(data, nb_entries*ndim);
|
||||
|
||||
for (i=0;i<4;i++)
|
||||
{
|
||||
for (j=0;j<ndim0;j++)
|
||||
pred[i*ndim0+j] = 0;
|
||||
}
|
||||
for (i=4;i<nb_vectors;i++)
|
||||
{
|
||||
for (j=0;j<ndim0;j++)
|
||||
pred[i*ndim0+j] = data[i*ndim+j+1] - COEF*data[(i-4)*ndim+j+1];
|
||||
}
|
||||
|
||||
VALGRIND_CHECK_MEM_IS_DEFINED(pred, nb_entries*ndim0);
|
||||
vq_train(pred, nb_vectors, codebook, nb_entries, ndim0);
|
||||
|
||||
delta = malloc(nb_vectors*ndim0*sizeof(*data));
|
||||
err = 0;
|
||||
for (i=0;i<nb_vectors;i++)
|
||||
{
|
||||
int nearest = find_nearest(codebook, nb_entries, &pred[i*ndim0], ndim0, NULL);
|
||||
for (j=0;j<ndim0;j++)
|
||||
{
|
||||
delta[i*ndim0+j] = pred[i*ndim0+j] - codebook[nearest*ndim0+j];
|
||||
err += delta[i*ndim0+j]*delta[i*ndim0+j];
|
||||
}
|
||||
//printf("\n");
|
||||
}
|
||||
fprintf(stderr, "Cepstrum RMS error: %f\n", sqrt(err/nb_vectors/ndim));
|
||||
|
||||
vq_train(delta, nb_vectors, codebook2, nb_entries, ndim0);
|
||||
|
||||
err=0;
|
||||
for (i=0;i<nb_vectors;i++)
|
||||
{
|
||||
int n1;
|
||||
n1 = find_nearest(codebook2, nb_entries, &delta[i*ndim0], ndim0, NULL);
|
||||
for (j=0;j<ndim0;j++)
|
||||
{
|
||||
delta[i*ndim0+j] = delta[i*ndim0+j] - codebook2[n1*ndim0+j];
|
||||
err += delta[i*ndim0+j]*delta[i*ndim0+j];
|
||||
}
|
||||
}
|
||||
fprintf(stderr, "Cepstrum RMS error after stage 2: %f)\n", sqrt(err/nb_vectors/ndim));
|
||||
|
||||
fout = fopen("ceps_codebooks.c", "w");
|
||||
fprintf(fout, "/* This file is automatically generated */\n\n");
|
||||
fprintf(fout, "float ceps_codebook1[%d*%d] = {\n",nb_entries, ndim0);
|
||||
|
||||
for (i=0;i<nb_entries;i++)
|
||||
{
|
||||
for (j=0;j<ndim0;j++)
|
||||
fprintf(fout, "%f, ", codebook[i*ndim0+j]);
|
||||
fprintf(fout, "\n");
|
||||
}
|
||||
fprintf(fout, "};\n\n");
|
||||
|
||||
fprintf(fout, "float ceps_codebook2[%d*%d] = {\n",nb_entries, ndim0);
|
||||
|
||||
for (i=0;i<nb_entries;i++)
|
||||
{
|
||||
for (j=0;j<ndim0;j++)
|
||||
fprintf(fout, "%f, ", codebook2[i*ndim0+j]);
|
||||
fprintf(fout, "\n");
|
||||
}
|
||||
fprintf(fout, "};\n\n");
|
||||
|
||||
fclose(fout);
|
||||
return 0;
|
||||
}
|
|
@ -51,6 +51,66 @@
|
|||
|
||||
#define NB_FEATURES (2*NB_BANDS+3+LPC_ORDER)
|
||||
|
||||
#include "ceps_codebooks.c"
|
||||
|
||||
int vq_quantize(const float *codebook, int nb_entries, const float *x, int ndim, float *dist)
|
||||
{
|
||||
int i, j;
|
||||
float min_dist = 1e15;
|
||||
int nearest = 0;
|
||||
|
||||
for (i=0;i<nb_entries;i++)
|
||||
{
|
||||
float dist=0;
|
||||
for (j=0;j<ndim;j++)
|
||||
dist += (x[j]-codebook[i*ndim+j])*(x[j]-codebook[i*ndim+j]);
|
||||
if (dist<min_dist)
|
||||
{
|
||||
min_dist = dist;
|
||||
nearest = i;
|
||||
}
|
||||
}
|
||||
if (dist)
|
||||
*dist = min_dist;
|
||||
return nearest;
|
||||
}
|
||||
|
||||
#define NB_BANDS_1 (NB_BANDS - 1)
|
||||
float vq_mem[NB_BANDS_1];
|
||||
int quantize(float *x, float *mem)
|
||||
{
|
||||
int i;
|
||||
int id, id2;
|
||||
float ref[NB_BANDS_1];
|
||||
RNN_COPY(ref, x, NB_BANDS_1);
|
||||
for (i=0;i<NB_BANDS_1;i++) {
|
||||
x[i] -= 0.0f*mem[i];
|
||||
}
|
||||
id = vq_quantize(ceps_codebook1, 1024, x, NB_BANDS_1, NULL);
|
||||
for (i=0;i<NB_BANDS_1;i++) {
|
||||
x[i] -= ceps_codebook1[id*NB_BANDS_1 + i];
|
||||
}
|
||||
id2 = vq_quantize(ceps_codebook2, 1024, x, NB_BANDS_1, NULL);
|
||||
for (i=0;i<NB_BANDS_1;i++) {
|
||||
x[i] = ceps_codebook2[id2*NB_BANDS_1 + i];
|
||||
}
|
||||
for (i=0;i<NB_BANDS_1;i++) {
|
||||
x[i] += ceps_codebook1[id*NB_BANDS_1 + i];
|
||||
}
|
||||
for (i=0;i<NB_BANDS_1;i++) {
|
||||
x[i] += 0.0f*mem[i];
|
||||
mem[i] = x[i];
|
||||
}
|
||||
if (0) {
|
||||
float err = 0;
|
||||
for (i=0;i<NB_BANDS_1;i++) {
|
||||
err += (x[i]-ref[i])*(x[i]-ref[i]);
|
||||
}
|
||||
printf("%f\n", sqrt(err/NB_BANDS_1));
|
||||
}
|
||||
|
||||
return id;
|
||||
}
|
||||
|
||||
typedef struct {
|
||||
float analysis_mem[OVERLAP_SIZE];
|
||||
|
@ -140,6 +200,7 @@ static void compute_frame_features(DenoiseState *st, const float *in) {
|
|||
E += Ex[i];
|
||||
}
|
||||
dct(st->features[st->pcount], Ly);
|
||||
quantize(&st->features[st->pcount][1], vq_mem);
|
||||
st->features[st->pcount][0] -= 4;
|
||||
g = lpc_from_cepstrum(st->lpc, st->features[st->pcount]);
|
||||
st->features[st->pcount][2*NB_BANDS+2] = log10(g);
|
||||
|
|
|
@ -153,6 +153,11 @@ def new_lpcnet_model(rnn_units1=384, rnn_units2=16, nb_used_features = 38, train
|
|||
gru_out2, _ = rnn2(Concatenate()([gru_out1, rep(cfeat)]))
|
||||
ulaw_prob = md(gru_out2)
|
||||
|
||||
rnn.trainable=False
|
||||
rnn2.trainable=False
|
||||
md.trainable=False
|
||||
embed.Trainable=False
|
||||
|
||||
model = Model([pcm, feat, pitch], ulaw_prob)
|
||||
model.rnn_units1 = rnn_units1
|
||||
model.rnn_units2 = rnn_units2
|
||||
|
|
|
@ -103,8 +103,8 @@ del pred
|
|||
del in_exc
|
||||
|
||||
# dump models to disk as we go
|
||||
checkpoint = ModelCheckpoint('lpcnet24b_384_10_G16_{epoch:02d}.h5')
|
||||
checkpoint = ModelCheckpoint('lpcnet24fq_384_10_G16_{epoch:02d}.h5')
|
||||
|
||||
#model.load_weights('lpcnet9b_384_10_G16_01.h5')
|
||||
model.compile(optimizer=Adam(0.001, amsgrad=True, decay=5e-5), loss='sparse_categorical_crossentropy')
|
||||
model.fit([in_data, features, periods], out_exc, batch_size=batch_size, epochs=nb_epochs, validation_split=0.0, callbacks=[checkpoint, lpcnet.Sparsify(2000, 40000, 400, (0.05, 0.05, 0.2))])
|
||||
model.load_weights('lpcnet24f_384_10_G16_31.h5')
|
||||
model.compile(optimizer=Adam(0.0005, amsgrad=True, decay=5e-5), loss='sparse_categorical_crossentropy')
|
||||
model.fit([in_data, features, periods], out_exc, batch_size=batch_size, epochs=nb_epochs, validation_split=0.0, callbacks=[checkpoint, lpcnet.Sparsify(0, 0, 1, (0.05, 0.05, 0.2))])
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue