20-bit VQ

This commit is contained in:
Jean-Marc Valin 2019-02-15 15:13:14 -05:00
parent 5be0e59ff0
commit 543ee94037
4 changed files with 469 additions and 4 deletions

399
dnn/ceps_vq_train.c Normal file
View file

@ -0,0 +1,399 @@
#include <valgrind/memcheck.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#define MIN(a,b) ((a)<(b)?(a):(b))
#define COEF 0.75f
#define MAX_ENTRIES 16384
void compute_weights(const float *x, float *w, int ndim)
{
int i;
w[0] = MIN(x[0], x[1]-x[0]);
for (i=1;i<ndim-1;i++)
w[i] = MIN(x[i]-x[i-1], x[i+1]-x[i]);
w[ndim-1] = MIN(x[ndim-1]-x[ndim-2], M_PI-x[ndim-1]);
for (i=0;i<ndim;i++)
w[i] = 1./(.01+w[i]);
w[0]*=3;
w[1]*=2;
/*
for (i=0;i<ndim;i++)
w[i] = 1;*/
}
int find_nearest(const float *codebook, int nb_entries, const float *x, int ndim, float *dist)
{
int i, j;
float min_dist = 1e15;
int nearest = 0;
for (i=0;i<nb_entries;i++)
{
float dist=0;
for (j=0;j<ndim;j++)
dist += (x[j]-codebook[i*ndim+j])*(x[j]-codebook[i*ndim+j]);
if (dist<min_dist)
{
min_dist = dist;
nearest = i;
}
}
if (dist)
*dist = min_dist;
return nearest;
}
int find_nearest_weighted(const float *codebook, int nb_entries, float *x, const float *w, int ndim)
{
int i, j;
float min_dist = 1e15;
int nearest = 0;
for (i=0;i<nb_entries;i++)
{
float dist=0;
for (j=0;j<ndim;j++)
dist += w[j]*(x[j]-codebook[i*ndim+j])*(x[j]-codebook[i*ndim+j]);
if (dist<min_dist)
{
min_dist = dist;
nearest = i;
}
}
return nearest;
}
int quantize_lsp(const float *x, const float *codebook1, const float *codebook2,
const float *codebook3, int nb_entries, float *xq, int ndim)
{
int i, n1, n2, n3;
float err[ndim], err2[ndim], err3[ndim];
float w[ndim], w2[ndim], w3[ndim];
w[0] = MIN(x[0], x[1]-x[0]);
for (i=1;i<ndim-1;i++)
w[i] = MIN(x[i]-x[i-1], x[i+1]-x[i]);
w[ndim-1] = MIN(x[ndim-1]-x[ndim-2], M_PI-x[ndim-1]);
/*
for (i=0;i<ndim;i++)
w[i] = 1./(.003+w[i]);
w[0]*=3;
w[1]*=2;*/
compute_weights(x, w, ndim);
for (i=0;i<ndim;i++)
err[i] = x[i]-COEF*xq[i];
n1 = find_nearest(codebook1, nb_entries, err, ndim, NULL);
for (i=0;i<ndim;i++)
{
xq[i] = COEF*xq[i] + codebook1[ndim*n1+i];
err[i] -= codebook1[ndim*n1+i];
}
for (i=0;i<ndim/2;i++)
{
err2[i] = err[2*i];
err3[i] = err[2*i+1];
w2[i] = w[2*i];
w3[i] = w[2*i+1];
}
n2 = find_nearest_weighted(codebook2, nb_entries, err2, w2, ndim/2);
n3 = find_nearest_weighted(codebook3, nb_entries, err3, w3, ndim/2);
for (i=0;i<ndim/2;i++)
{
xq[2*i] += codebook2[ndim*n2/2+i];
xq[2*i+1] += codebook3[ndim*n3/2+i];
}
return 0;
}
void split(float *codebook, int nb_entries, int ndim)
{
int i,j;
for (i=0;i<nb_entries;i++)
{
for (j=0;j<ndim;j++)
{
float delta = .01*(rand()/(float)RAND_MAX-.5);
codebook[i*ndim+j] += delta;
codebook[(i+nb_entries)*ndim+j] = codebook[i*ndim+j] - delta;
}
}
}
void split1(float *codebook, int nb_entries, const float *data, int nb_vectors, int ndim)
{
int i,j;
int nearest[nb_vectors];
float dist[nb_entries];
int count[nb_entries];
int worst;
for (i=0;i<nb_entries;i++)
dist[i] = 0;
for (i=0;i<nb_entries;i++)
count[i]=0;
for (i=0;i<nb_vectors;i++)
{
float d;
nearest[i] = find_nearest(codebook, nb_entries, data+i*ndim, ndim, &d);
dist[nearest[i]] += d;
count[nearest[i]]++;
}
worst=0;
for (i=1;i<nb_entries;i++)
{
if (dist[i] > dist[worst])
worst=i;
}
for (j=0;j<ndim;j++)
{
float delta = .001*(rand()/(float)RAND_MAX-.5);
codebook[worst*ndim+j] += delta;
codebook[nb_entries*ndim+j] = codebook[worst*ndim+j] - delta;
}
}
void update(float *data, int nb_vectors, float *codebook, int nb_entries, int ndim)
{
int i,j;
int count[nb_entries];
int nearest[nb_vectors];
double err=0;
for (i=0;i<nb_entries;i++)
count[i] = 0;
for (i=0;i<nb_vectors;i++)
{
float dist;
nearest[i] = find_nearest(codebook, nb_entries, data+i*ndim, ndim, &dist);
err += dist;
}
printf("RMS error = %f\n", sqrt(err/nb_vectors/ndim));
for (i=0;i<nb_entries*ndim;i++)
codebook[i] = 0;
for (i=0;i<nb_vectors;i++)
{
int n = nearest[i];
count[n]++;
for (j=0;j<ndim;j++)
codebook[n*ndim+j] += data[i*ndim+j];
}
float w2=0;
for (i=0;i<nb_entries;i++)
{
for (j=0;j<ndim;j++)
codebook[i*ndim+j] *= (1./count[i]);
w2 += (count[i]/(float)nb_vectors)*(count[i]/(float)nb_vectors);
}
//fprintf(stderr, "%f / %d\n", 1./w2, nb_entries);
}
void update_weighted(float *data, float *weight, int nb_vectors, float *codebook, int nb_entries, int ndim)
{
int i,j;
float count[MAX_ENTRIES][ndim];
int nearest[nb_vectors];
for (i=0;i<nb_entries;i++)
for (j=0;j<ndim;j++)
count[i][j] = 0;
for (i=0;i<nb_vectors;i++)
{
nearest[i] = find_nearest_weighted(codebook, nb_entries, data+i*ndim, weight+i*ndim, ndim);
}
for (i=0;i<nb_entries*ndim;i++)
codebook[i] = 0;
for (i=0;i<nb_vectors;i++)
{
int n = nearest[i];
for (j=0;j<ndim;j++)
{
float w = sqrt(weight[i*ndim+j]);
count[n][j]+=w;
codebook[n*ndim+j] += w*data[i*ndim+j];
}
}
//float w2=0;
for (i=0;i<nb_entries;i++)
{
for (j=0;j<ndim;j++)
codebook[i*ndim+j] *= (1./count[i][j]);
//w2 += (count[i]/(float)nb_vectors)*(count[i]/(float)nb_vectors);
}
//fprintf(stderr, "%f / %d\n", 1./w2, nb_entries);
}
void vq_train(float *data, int nb_vectors, float *codebook, int nb_entries, int ndim)
{
int i, j, e;
e = 1;
for (j=0;j<ndim;j++)
codebook[j] = 0;
for (i=0;i<nb_vectors;i++)
for (j=0;j<ndim;j++)
codebook[j] += data[i*ndim+j];
for (j=0;j<ndim;j++)
codebook[j] *= (1./nb_vectors);
while (e< nb_entries)
{
#if 1
split(codebook, e, ndim);
e<<=1;
#else
split1(codebook, e, data, nb_vectors, ndim);
e++;
#endif
fprintf(stderr, "%d\n", e);
for (j=0;j<4;j++)
update(data, nb_vectors, codebook, e, ndim);
}
for (j=0;j<ndim*2;j++)
update(data, nb_vectors, codebook, e, ndim);
}
void vq_train_weighted(float *data, float *weight, int nb_vectors, float *codebook, int nb_entries, int ndim)
{
int i, j, e;
e = 1;
for (j=0;j<ndim;j++)
codebook[j] = 0;
for (i=0;i<nb_vectors;i++)
for (j=0;j<ndim;j++)
codebook[j] += data[i*ndim+j];
for (j=0;j<ndim;j++)
codebook[j] *= (1./nb_vectors);
while (e< nb_entries)
{
#if 0
split(codebook, e, ndim);
e<<=1;
#else
split1(codebook, e, data, nb_vectors, ndim);
e++;
#endif
fprintf(stderr, "%d\n", e);
for (j=0;j<ndim;j++)
update_weighted(data, weight, nb_vectors, codebook, e, ndim);
}
}
int main(int argc, char **argv)
{
int i,j;
int nb_vectors, nb_entries, ndim, ndim0, total_dim;
float *data, *pred, *codebook, *codebook2;
float *delta;
double err;
FILE *fout;
ndim = atoi(argv[1]);
ndim0 = ndim-1;
total_dim = atoi(argv[2]);
nb_vectors = atoi(argv[3]);
nb_entries = 1<<atoi(argv[4]);
data = malloc((nb_vectors*ndim+total_dim)*sizeof(*data));
pred = malloc(nb_vectors*ndim0*sizeof(*pred));
codebook = malloc(nb_entries*ndim0*sizeof(*codebook));
codebook2 = malloc(nb_entries*ndim0*sizeof(*codebook2));
for (i=0;i<nb_vectors;i++)
{
fread(&data[i*ndim], sizeof(float), total_dim, stdin);
if (feof(stdin))
break;
}
nb_vectors = i;
VALGRIND_CHECK_MEM_IS_DEFINED(data, nb_entries*ndim);
for (i=0;i<4;i++)
{
for (j=0;j<ndim0;j++)
pred[i*ndim0+j] = 0;
}
for (i=4;i<nb_vectors;i++)
{
for (j=0;j<ndim0;j++)
pred[i*ndim0+j] = data[i*ndim+j+1] - COEF*data[(i-4)*ndim+j+1];
}
VALGRIND_CHECK_MEM_IS_DEFINED(pred, nb_entries*ndim0);
vq_train(pred, nb_vectors, codebook, nb_entries, ndim0);
delta = malloc(nb_vectors*ndim0*sizeof(*data));
err = 0;
for (i=0;i<nb_vectors;i++)
{
int nearest = find_nearest(codebook, nb_entries, &pred[i*ndim0], ndim0, NULL);
for (j=0;j<ndim0;j++)
{
delta[i*ndim0+j] = pred[i*ndim0+j] - codebook[nearest*ndim0+j];
err += delta[i*ndim0+j]*delta[i*ndim0+j];
}
//printf("\n");
}
fprintf(stderr, "Cepstrum RMS error: %f\n", sqrt(err/nb_vectors/ndim));
vq_train(delta, nb_vectors, codebook2, nb_entries, ndim0);
err=0;
for (i=0;i<nb_vectors;i++)
{
int n1;
n1 = find_nearest(codebook2, nb_entries, &delta[i*ndim0], ndim0, NULL);
for (j=0;j<ndim0;j++)
{
delta[i*ndim0+j] = delta[i*ndim0+j] - codebook2[n1*ndim0+j];
err += delta[i*ndim0+j]*delta[i*ndim0+j];
}
}
fprintf(stderr, "Cepstrum RMS error after stage 2: %f)\n", sqrt(err/nb_vectors/ndim));
fout = fopen("ceps_codebooks.c", "w");
fprintf(fout, "/* This file is automatically generated */\n\n");
fprintf(fout, "float ceps_codebook1[%d*%d] = {\n",nb_entries, ndim0);
for (i=0;i<nb_entries;i++)
{
for (j=0;j<ndim0;j++)
fprintf(fout, "%f, ", codebook[i*ndim0+j]);
fprintf(fout, "\n");
}
fprintf(fout, "};\n\n");
fprintf(fout, "float ceps_codebook2[%d*%d] = {\n",nb_entries, ndim0);
for (i=0;i<nb_entries;i++)
{
for (j=0;j<ndim0;j++)
fprintf(fout, "%f, ", codebook2[i*ndim0+j]);
fprintf(fout, "\n");
}
fprintf(fout, "};\n\n");
fclose(fout);
return 0;
}

View file

@ -51,6 +51,66 @@
#define NB_FEATURES (2*NB_BANDS+3+LPC_ORDER) #define NB_FEATURES (2*NB_BANDS+3+LPC_ORDER)
#include "ceps_codebooks.c"
int vq_quantize(const float *codebook, int nb_entries, const float *x, int ndim, float *dist)
{
int i, j;
float min_dist = 1e15;
int nearest = 0;
for (i=0;i<nb_entries;i++)
{
float dist=0;
for (j=0;j<ndim;j++)
dist += (x[j]-codebook[i*ndim+j])*(x[j]-codebook[i*ndim+j]);
if (dist<min_dist)
{
min_dist = dist;
nearest = i;
}
}
if (dist)
*dist = min_dist;
return nearest;
}
#define NB_BANDS_1 (NB_BANDS - 1)
float vq_mem[NB_BANDS_1];
int quantize(float *x, float *mem)
{
int i;
int id, id2;
float ref[NB_BANDS_1];
RNN_COPY(ref, x, NB_BANDS_1);
for (i=0;i<NB_BANDS_1;i++) {
x[i] -= 0.0f*mem[i];
}
id = vq_quantize(ceps_codebook1, 1024, x, NB_BANDS_1, NULL);
for (i=0;i<NB_BANDS_1;i++) {
x[i] -= ceps_codebook1[id*NB_BANDS_1 + i];
}
id2 = vq_quantize(ceps_codebook2, 1024, x, NB_BANDS_1, NULL);
for (i=0;i<NB_BANDS_1;i++) {
x[i] = ceps_codebook2[id2*NB_BANDS_1 + i];
}
for (i=0;i<NB_BANDS_1;i++) {
x[i] += ceps_codebook1[id*NB_BANDS_1 + i];
}
for (i=0;i<NB_BANDS_1;i++) {
x[i] += 0.0f*mem[i];
mem[i] = x[i];
}
if (0) {
float err = 0;
for (i=0;i<NB_BANDS_1;i++) {
err += (x[i]-ref[i])*(x[i]-ref[i]);
}
printf("%f\n", sqrt(err/NB_BANDS_1));
}
return id;
}
typedef struct { typedef struct {
float analysis_mem[OVERLAP_SIZE]; float analysis_mem[OVERLAP_SIZE];
@ -140,6 +200,7 @@ static void compute_frame_features(DenoiseState *st, const float *in) {
E += Ex[i]; E += Ex[i];
} }
dct(st->features[st->pcount], Ly); dct(st->features[st->pcount], Ly);
quantize(&st->features[st->pcount][1], vq_mem);
st->features[st->pcount][0] -= 4; st->features[st->pcount][0] -= 4;
g = lpc_from_cepstrum(st->lpc, st->features[st->pcount]); g = lpc_from_cepstrum(st->lpc, st->features[st->pcount]);
st->features[st->pcount][2*NB_BANDS+2] = log10(g); st->features[st->pcount][2*NB_BANDS+2] = log10(g);

View file

@ -153,6 +153,11 @@ def new_lpcnet_model(rnn_units1=384, rnn_units2=16, nb_used_features = 38, train
gru_out2, _ = rnn2(Concatenate()([gru_out1, rep(cfeat)])) gru_out2, _ = rnn2(Concatenate()([gru_out1, rep(cfeat)]))
ulaw_prob = md(gru_out2) ulaw_prob = md(gru_out2)
rnn.trainable=False
rnn2.trainable=False
md.trainable=False
embed.Trainable=False
model = Model([pcm, feat, pitch], ulaw_prob) model = Model([pcm, feat, pitch], ulaw_prob)
model.rnn_units1 = rnn_units1 model.rnn_units1 = rnn_units1
model.rnn_units2 = rnn_units2 model.rnn_units2 = rnn_units2

View file

@ -103,8 +103,8 @@ del pred
del in_exc del in_exc
# dump models to disk as we go # dump models to disk as we go
checkpoint = ModelCheckpoint('lpcnet24b_384_10_G16_{epoch:02d}.h5') checkpoint = ModelCheckpoint('lpcnet24fq_384_10_G16_{epoch:02d}.h5')
#model.load_weights('lpcnet9b_384_10_G16_01.h5') model.load_weights('lpcnet24f_384_10_G16_31.h5')
model.compile(optimizer=Adam(0.001, amsgrad=True, decay=5e-5), loss='sparse_categorical_crossentropy') model.compile(optimizer=Adam(0.0005, amsgrad=True, decay=5e-5), loss='sparse_categorical_crossentropy')
model.fit([in_data, features, periods], out_exc, batch_size=batch_size, epochs=nb_epochs, validation_split=0.0, callbacks=[checkpoint, lpcnet.Sparsify(2000, 40000, 400, (0.05, 0.05, 0.2))]) model.fit([in_data, features, periods], out_exc, batch_size=batch_size, epochs=nb_epochs, validation_split=0.0, callbacks=[checkpoint, lpcnet.Sparsify(0, 0, 1, (0.05, 0.05, 0.2))])