mirror of
https://github.com/xiph/opus.git
synced 2025-05-29 22:57:41 +00:00
Using 8-bit recurrent weights for GRU B
This commit is contained in:
parent
8783ef0088
commit
51ef273e06
4 changed files with 13 additions and 6 deletions
|
@ -283,7 +283,7 @@ void compute_gru2(const GRULayer *gru, float *state, const float *input)
|
|||
sgemv_accum8x4(zrh, gru->input_weights, 3*N, M, stride, input);
|
||||
for (i=0;i<3*N;i++)
|
||||
recur[i] = gru->bias[3*N + i];
|
||||
sgemv_accum(recur, gru->recurrent_weights, 3*N, N, stride, state);
|
||||
sgemv_accum8x4(recur, gru->recurrent_weights, 3*N, N, stride, state);
|
||||
for (i=0;i<2*N;i++)
|
||||
zrh[i] += recur[i];
|
||||
compute_activation(zrh, zrh, 2*N, ACTIVATION_SIGMOID);
|
||||
|
@ -326,7 +326,7 @@ void compute_gruB(const GRULayer *gru, const float* gru_b_condition, float *stat
|
|||
sparse_sgemv_accum8x4(zrh, gru->input_weights, 3*N, M, gru->input_weights_idx, input);
|
||||
for (i=0;i<3*N;i++)
|
||||
recur[i] = gru->bias[3*N + i];
|
||||
sgemv_accum(recur, gru->recurrent_weights, 3*N, N, stride, state);
|
||||
sgemv_accum8x4(recur, gru->recurrent_weights, 3*N, N, stride, state);
|
||||
for (i=0;i<2*N;i++)
|
||||
zrh[i] += recur[i];
|
||||
compute_activation(zrh, zrh, 2*N, ACTIVATION_SIGMOID);
|
||||
|
@ -361,7 +361,7 @@ void compute_gru3(const GRULayer *gru, float *state, const float *input)
|
|||
RNN_COPY(zrh, input, 3*N);
|
||||
for (i=0;i<3*N;i++)
|
||||
recur[i] = gru->bias[3*N + i];
|
||||
sgemv_accum(recur, gru->recurrent_weights, 3*N, N, stride, state);
|
||||
sgemv_accum8x4(recur, gru->recurrent_weights, 3*N, N, stride, state);
|
||||
for (i=0;i<2*N;i++)
|
||||
zrh[i] += recur[i];
|
||||
compute_activation(zrh, zrh, 2*N, ACTIVATION_SIGMOID);
|
||||
|
|
|
@ -59,7 +59,7 @@ typedef struct {
|
|||
const float *subias;
|
||||
const qweight *input_weights;
|
||||
const int *input_weights_idx;
|
||||
const float *recurrent_weights;
|
||||
const qweight *recurrent_weights;
|
||||
int nb_inputs;
|
||||
int nb_neurons;
|
||||
int activation;
|
||||
|
|
|
@ -138,7 +138,14 @@ def dump_grub(self, f, hf, gru_a_size):
|
|||
print("printing layer " + name + " of type " + self.__class__.__name__)
|
||||
weights = self.get_weights()
|
||||
qweight = printSparseVector(f, weights[0][:gru_a_size, :], name + '_weights', have_diag=False)
|
||||
|
||||
f.write('#ifdef DOT_PROD\n')
|
||||
qweight = np.clip(np.round(128.*weights[1]).astype('int'), -128, 127)
|
||||
printVector(f, qweight, name + '_recurrent_weights', dotp=True, dtype='qweight')
|
||||
f.write('#else /*DOT_PROD*/\n')
|
||||
printVector(f, weights[1], name + '_recurrent_weights')
|
||||
f.write('#endif /*DOT_PROD*/\n')
|
||||
|
||||
printVector(f, weights[-1], name + '_bias')
|
||||
subias = weights[-1].copy()
|
||||
subias[0,:] = subias[0,:] - np.sum(qweight*(1./128.),axis=0)
|
||||
|
|
|
@ -259,12 +259,12 @@ def new_lpcnet_model(rnn_units1=384, rnn_units2=16, nb_used_features = 20, train
|
|||
rnn = CuDNNGRU(rnn_units1, return_sequences=True, return_state=True, name='gru_a',
|
||||
recurrent_constraint = constraint, recurrent_regularizer=quant)
|
||||
rnn2 = CuDNNGRU(rnn_units2, return_sequences=True, return_state=True, name='gru_b',
|
||||
kernel_constraint=constraint, kernel_regularizer=quant)
|
||||
kernel_constraint=constraint, recurrent_constraint = constraint, kernel_regularizer=quant, recurrent_regularizer=quant)
|
||||
else:
|
||||
rnn = GRU(rnn_units1, return_sequences=True, return_state=True, recurrent_activation="sigmoid", reset_after='true', name='gru_a',
|
||||
recurrent_constraint = constraint, recurrent_regularizer=quant)
|
||||
rnn2 = GRU(rnn_units2, return_sequences=True, return_state=True, recurrent_activation="sigmoid", reset_after='true', name='gru_b',
|
||||
kernel_constraint=constraint, kernel_regularizer=quant)
|
||||
kernel_constraint=constraint, recurrent_constraint = constraint, kernel_regularizer=quant, recurrent_regularizer=quant)
|
||||
|
||||
rnn_in = Concatenate()([cpcm, rep(cfeat)])
|
||||
md = MDense(pcm_levels, activation='sigmoid', name='dual_fc')
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue