mirror of
https://github.com/xiph/opus.git
synced 2025-05-19 01:48:30 +00:00
more pcm outputs
This commit is contained in:
parent
70789e6f43
commit
4fec1144f3
5 changed files with 57 additions and 29 deletions
|
@ -38,6 +38,7 @@
|
|||
#include "pitch.h"
|
||||
#include "arch.h"
|
||||
#include "celt_lpc.h"
|
||||
#include <assert.h>
|
||||
|
||||
#define PREEMPHASIS (0.85f)
|
||||
|
||||
|
@ -64,7 +65,7 @@
|
|||
#define CEPS_MEM 8
|
||||
#define NB_DELTA_CEPS 6
|
||||
|
||||
#define NB_FEATURES (2*NB_BANDS+2+LPC_ORDER)
|
||||
#define NB_FEATURES (2*NB_BANDS+3+LPC_ORDER)
|
||||
|
||||
|
||||
#ifndef TRAINING
|
||||
|
@ -305,12 +306,20 @@ int lowpass = FREQ_SIZE;
|
|||
int band_lp = NB_BANDS;
|
||||
#endif
|
||||
|
||||
static void frame_analysis(DenoiseState *st, signed char *iexc, float *lpc, kiss_fft_cpx *X, float *Ex, const float *in) {
|
||||
short float2short(float x)
|
||||
{
|
||||
int i;
|
||||
i = (int)floor(.5+x);
|
||||
return IMAX(-32767, IMIN(32767, i));
|
||||
}
|
||||
|
||||
static float frame_analysis(DenoiseState *st, signed char *iexc, short *pred, short *pcm, float *lpc, kiss_fft_cpx *X, float *Ex, const float *in) {
|
||||
int i;
|
||||
float x[WINDOW_SIZE];
|
||||
float x0[WINDOW_SIZE];
|
||||
float ac[LPC_ORDER+1];
|
||||
float rc[LPC_ORDER];
|
||||
float g;
|
||||
RNN_COPY(x, st->analysis_mem, FRAME_SIZE);
|
||||
for (i=0;i<FRAME_SIZE;i++) x[FRAME_SIZE + i] = in[i];
|
||||
RNN_COPY(st->analysis_mem, in, FRAME_SIZE);
|
||||
|
@ -325,7 +334,8 @@ static void frame_analysis(DenoiseState *st, signed char *iexc, float *lpc, kiss
|
|||
/* Lag windowing. */
|
||||
for (i=1;i<LPC_ORDER+1;i++) ac[i] *= (1 - 6e-5*i*i);
|
||||
e = _celt_lpc(lpc, rc, ac, LPC_ORDER);
|
||||
g_1 = sqrt(FRAME_SIZE/(1e-10+e));
|
||||
g = sqrt((1e-10+e)*(1./FRAME_SIZE));
|
||||
g_1 = 1./g;
|
||||
#if 0
|
||||
for(i=0;i<WINDOW_SIZE;i++) printf("%f ", x[i]);
|
||||
printf("\n");
|
||||
|
@ -343,6 +353,8 @@ static void frame_analysis(DenoiseState *st, signed char *iexc, float *lpc, kiss
|
|||
z = &x0[i]+FRAME_SIZE/2;
|
||||
tmp = z[0];
|
||||
for (j=0;j<LPC_ORDER;j++) tmp += lpc[j]*z[-1-j];
|
||||
pcm[i] = float2short(z[0]);
|
||||
pred[i] = float2short(z[0] - tmp);
|
||||
nexc = (int)floor(.5 + 16*g_1*tmp);
|
||||
nexc = IMAX(-128, IMIN(127, nexc));
|
||||
iexc[i] = nexc;
|
||||
|
@ -357,9 +369,10 @@ static void frame_analysis(DenoiseState *st, signed char *iexc, float *lpc, kiss
|
|||
X[i].r = X[i].i = 0;
|
||||
#endif
|
||||
compute_band_energy(Ex, X);
|
||||
return g;
|
||||
}
|
||||
|
||||
static int compute_frame_features(DenoiseState *st, signed char *iexc, kiss_fft_cpx *X, kiss_fft_cpx *P,
|
||||
static int compute_frame_features(DenoiseState *st, signed char *iexc, short *pred, short *pcm, kiss_fft_cpx *X, kiss_fft_cpx *P,
|
||||
float *Ex, float *Ep, float *Exp, float *features, const float *in) {
|
||||
int i;
|
||||
float E = 0;
|
||||
|
@ -371,7 +384,8 @@ static int compute_frame_features(DenoiseState *st, signed char *iexc, kiss_fft_
|
|||
float gain;
|
||||
float tmp[NB_BANDS];
|
||||
float follow, logMax;
|
||||
frame_analysis(st, iexc, lpc, X, Ex, in);
|
||||
float g;
|
||||
g = frame_analysis(st, iexc, pred, pcm, lpc, X, Ex, in);
|
||||
RNN_MOVE(st->pitch_buf, &st->pitch_buf[FRAME_SIZE], PITCH_BUF_SIZE-FRAME_SIZE);
|
||||
RNN_COPY(&st->pitch_buf[PITCH_BUF_SIZE-FRAME_SIZE], in, FRAME_SIZE);
|
||||
//pre[0] = &st->pitch_buf[0];
|
||||
|
@ -419,7 +433,8 @@ static int compute_frame_features(DenoiseState *st, signed char *iexc, kiss_fft_
|
|||
#endif
|
||||
features[2*NB_BANDS] = .01*(pitch_index-200);
|
||||
features[2*NB_BANDS+1] = gain;
|
||||
for (i=0;i<LPC_ORDER;i++) features[2*NB_BANDS+2+i] = lpc[i];
|
||||
features[2*NB_BANDS+2] = log10(g);
|
||||
for (i=0;i<LPC_ORDER;i++) features[2*NB_BANDS+3+i] = lpc[i];
|
||||
#if 0
|
||||
for (i=0;i<NB_FEATURES;i++) printf("%f ", features[i]);
|
||||
printf("\n");
|
||||
|
@ -505,11 +520,11 @@ float rnnoise_process_frame(DenoiseState *st, float *out, const float *in) {
|
|||
float g[NB_BANDS];
|
||||
float gf[FREQ_SIZE]={1};
|
||||
float vad_prob = 0;
|
||||
int silence;
|
||||
int silence=0;
|
||||
static const float a_hp[2] = {-1.99599, 0.99600};
|
||||
static const float b_hp[2] = {-2, 1};
|
||||
biquad(x, st->mem_hp_x, in, b_hp, a_hp, FRAME_SIZE);
|
||||
silence = compute_frame_features(st, NULL, X, P, Ex, Ep, Exp, features, x);
|
||||
//silence = compute_frame_features(st, NULL, X, P, Ex, Ep, Exp, features, x);
|
||||
|
||||
if (!silence) {
|
||||
pitch_filter(X, P, Ex, Ep, Exp, g);
|
||||
|
@ -554,15 +569,23 @@ int main(int argc, char **argv) {
|
|||
float x[FRAME_SIZE];
|
||||
FILE *f1;
|
||||
FILE *fexc;
|
||||
FILE *ffeat;
|
||||
FILE *fpred;
|
||||
FILE *fpcm;
|
||||
signed char iexc[FRAME_SIZE];
|
||||
short pred[FRAME_SIZE];
|
||||
short pcm[FRAME_SIZE];
|
||||
DenoiseState *st;
|
||||
st = rnnoise_create();
|
||||
if (argc!=3) {
|
||||
fprintf(stderr, "usage: %s <speech> <exc out>\n", argv[0]);
|
||||
if (argc!=6) {
|
||||
fprintf(stderr, "usage: %s <speech> <exc out> <features out> <prediction out> <pcm out> \n", argv[0]);
|
||||
return 1;
|
||||
}
|
||||
f1 = fopen(argv[1], "r");
|
||||
fexc = fopen(argv[2], "w");
|
||||
ffeat = fopen(argv[3], "w");
|
||||
fpred = fopen(argv[4], "w");
|
||||
fpcm = fopen(argv[5], "w");
|
||||
while (1) {
|
||||
kiss_fft_cpx X[FREQ_SIZE], P[WINDOW_SIZE];
|
||||
float Ex[NB_BANDS], Ep[NB_BANDS];
|
||||
|
@ -582,10 +605,12 @@ int main(int argc, char **argv) {
|
|||
biquad(x, mem_hp_x, x, b_hp, a_hp, FRAME_SIZE);
|
||||
preemphasis(x, &mem_preemph, x, PREEMPHASIS, FRAME_SIZE);
|
||||
|
||||
compute_frame_features(st, iexc, X, P, Ex, Ep, Exp, features, x);
|
||||
compute_frame_features(st, iexc, pred, pcm, X, P, Ex, Ep, Exp, features, x);
|
||||
#if 1
|
||||
fwrite(features, sizeof(float), NB_FEATURES, stdout);
|
||||
fwrite(iexc, sizeof(signed char), FRAME_SIZE, fexc);
|
||||
fwrite(features, sizeof(float), NB_FEATURES, ffeat);
|
||||
fwrite(pred, sizeof(short), FRAME_SIZE, fpred);
|
||||
fwrite(pcm, sizeof(short), FRAME_SIZE, fpcm);
|
||||
#endif
|
||||
count++;
|
||||
}
|
||||
|
|
|
@ -73,6 +73,7 @@ for c in range(1, nb_frames):
|
|||
#fexc[0, 0, 0] = in_data[f*frame_size + i, 0]
|
||||
#print(cfeat.shape)
|
||||
p, state = dec.predict([fexc, cfeat[:, fr:fr+1, :], state])
|
||||
#p = np.maximum(p-0.003, 0)
|
||||
p = p/(1e-5 + np.sum(p))
|
||||
#print(np.sum(p))
|
||||
iexc[0, 0, 0] = np.argmax(np.random.multinomial(1, p[0,0,:], 1))-128
|
||||
|
|
|
@ -10,11 +10,11 @@ from ulaw import ulaw2lin, lin2ulaw
|
|||
import keras.backend as K
|
||||
import h5py
|
||||
|
||||
#import tensorflow as tf
|
||||
#from keras.backend.tensorflow_backend import set_session
|
||||
#config = tf.ConfigProto()
|
||||
#config.gpu_options.per_process_gpu_memory_fraction = 0.44
|
||||
#set_session(tf.Session(config=config))
|
||||
import tensorflow as tf
|
||||
from keras.backend.tensorflow_backend import set_session
|
||||
config = tf.ConfigProto()
|
||||
config.gpu_options.per_process_gpu_memory_fraction = 0.2
|
||||
set_session(tf.Session(config=config))
|
||||
|
||||
nb_epochs = 40
|
||||
batch_size = 64
|
||||
|
@ -66,7 +66,7 @@ in_data = np.reshape(in_data, (nb_frames*pcm_chunk_size, 1))
|
|||
out_data = np.reshape(data, (nb_frames*pcm_chunk_size, 1))
|
||||
|
||||
|
||||
model.load_weights('wavenet3e_30.h5')
|
||||
model.load_weights('wavenet3g_30.h5')
|
||||
|
||||
order = 16
|
||||
|
||||
|
@ -92,6 +92,7 @@ for c in range(1, nb_frames):
|
|||
#fexc[0, 0, 0] = in_data[f*frame_size + i, 0]
|
||||
#print(cfeat.shape)
|
||||
p, state = dec.predict([fexc, cfeat[:, fr:fr+1, :], state])
|
||||
#p = np.maximum(p-0.003, 0)
|
||||
p = p/(1e-5 + np.sum(p))
|
||||
#print(np.sum(p))
|
||||
iexc[0, 0, 0] = np.argmax(np.random.multinomial(1, p[0,0,:], 1))-128
|
||||
|
|
|
@ -9,11 +9,11 @@ from ulaw import ulaw2lin, lin2ulaw
|
|||
import keras.backend as K
|
||||
import h5py
|
||||
|
||||
#import tensorflow as tf
|
||||
#from keras.backend.tensorflow_backend import set_session
|
||||
#config = tf.ConfigProto()
|
||||
#config.gpu_options.per_process_gpu_memory_fraction = 0.44
|
||||
#set_session(tf.Session(config=config))
|
||||
import tensorflow as tf
|
||||
from keras.backend.tensorflow_backend import set_session
|
||||
config = tf.ConfigProto()
|
||||
config.gpu_options.per_process_gpu_memory_fraction = 0.44
|
||||
set_session(tf.Session(config=config))
|
||||
|
||||
nb_epochs = 40
|
||||
batch_size = 64
|
||||
|
|
|
@ -10,11 +10,11 @@ from ulaw import ulaw2lin, lin2ulaw
|
|||
import keras.backend as K
|
||||
import h5py
|
||||
|
||||
#import tensorflow as tf
|
||||
#from keras.backend.tensorflow_backend import set_session
|
||||
#config = tf.ConfigProto()
|
||||
#config.gpu_options.per_process_gpu_memory_fraction = 0.44
|
||||
#set_session(tf.Session(config=config))
|
||||
import tensorflow as tf
|
||||
from keras.backend.tensorflow_backend import set_session
|
||||
config = tf.ConfigProto()
|
||||
config.gpu_options.per_process_gpu_memory_fraction = 0.44
|
||||
set_session(tf.Session(config=config))
|
||||
|
||||
nb_epochs = 40
|
||||
batch_size = 64
|
||||
|
@ -43,6 +43,7 @@ data = data[:nb_frames*pcm_chunk_size]
|
|||
features = features[:nb_frames*feature_chunk_size*nb_features]
|
||||
|
||||
in_data = np.concatenate([data[0:1], data[:-1]]);
|
||||
in_data = in_data + np.random.randint(-1, 1, len(data))
|
||||
|
||||
features = np.reshape(features, (nb_frames*feature_chunk_size, nb_features))
|
||||
pitch = 1.*data
|
||||
|
@ -67,7 +68,7 @@ features = features[:, :, :nb_used_features]
|
|||
# f.create_dataset('data', data=in_data[:50000, :, :])
|
||||
# f.create_dataset('feat', data=features[:50000, :, :])
|
||||
|
||||
checkpoint = ModelCheckpoint('wavenet3e_{epoch:02d}.h5')
|
||||
checkpoint = ModelCheckpoint('wavenet3g_{epoch:02d}.h5')
|
||||
|
||||
#model.load_weights('wavernn1c_01.h5')
|
||||
model.compile(optimizer=Adam(0.001, amsgrad=True, decay=2e-4), loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'])
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue