Adding some sparse GRU support

Still need to properly dump as sparse.
This commit is contained in:
Jean-Marc Valin 2018-11-28 18:49:19 -05:00
parent ec671ed90e
commit 4de3e53a73
4 changed files with 127 additions and 3 deletions

View file

@ -41,10 +41,10 @@ max_rnn_neurons = 1
max_conv_inputs = 1 max_conv_inputs = 1
max_mdense_tmp = 1 max_mdense_tmp = 1
def printVector(f, vector, name): def printVector(f, vector, name, dtype='float'):
v = np.reshape(vector, (-1)); v = np.reshape(vector, (-1));
#print('static const float ', name, '[', len(v), '] = \n', file=f) #print('static const float ', name, '[', len(v), '] = \n', file=f)
f.write('static const float {}[{}] = {{\n '.format(name, len(v))) f.write('static const {} {}[{}] = {{\n '.format(dtype, name, len(v)))
for i in range(0, len(v)): for i in range(0, len(v)):
f.write('{}'.format(v[i])) f.write('{}'.format(v[i]))
if (i!=len(v)-1): if (i!=len(v)-1):
@ -59,11 +59,51 @@ def printVector(f, vector, name):
f.write('\n};\n\n') f.write('\n};\n\n')
return; return;
def printSparseVector(f, A, name):
N = A.shape[0]
W = np.zeros((0,))
diag = np.concatenate([np.diag(A[:,:N]), np.diag(A[:,N:2*N]), np.diag(A[:,2*N:])])
A[:,:N] = A[:,:N] - np.diag(np.diag(A[:,:N]))
A[:,N:2*N] = A[:,N:2*N] - np.diag(np.diag(A[:,N:2*N]))
A[:,2*N:] = A[:,2*N:] - np.diag(np.diag(A[:,2*N:]))
printVector(f, diag, name + '_diag')
for i in range(3*N//16):
for j in range(N):
W = np.concatenate([W, A[j, i*16:(i+1)*16]])
printVector(f, W, name)
idx = np.tile(np.concatenate([np.array([N]), np.arange(N)]), 3*N//16)
printVector(f, idx, name + '_idx', dtype='int')
return;
def dump_layer_ignore(self, f, hf): def dump_layer_ignore(self, f, hf):
print("ignoring layer " + self.name + " of type " + self.__class__.__name__) print("ignoring layer " + self.name + " of type " + self.__class__.__name__)
return False return False
Layer.dump_layer = dump_layer_ignore Layer.dump_layer = dump_layer_ignore
def dump_sparse_gru(self, f, hf):
global max_rnn_neurons
name = 'sparse_' + self.name
print("printing layer " + name + " of type sparse " + self.__class__.__name__)
weights = self.get_weights()
printSparseVector(f, weights[1], name + '_recurrent_weights')
printVector(f, weights[-1], name + '_bias')
if hasattr(self, 'activation'):
activation = self.activation.__name__.upper()
else:
activation = 'TANH'
if hasattr(self, 'reset_after') and not self.reset_after:
reset_after = 0
else:
reset_after = 1
neurons = weights[0].shape[1]//3
max_rnn_neurons = max(max_rnn_neurons, neurons)
f.write('const SparseGRULayer {} = {{\n {}_bias,\n {}_recurrent_weights_diag,\n {}_recurrent_weights,\n {}_recurrent_weights_idx,\n {}, ACTIVATION_{}, {}\n}};\n\n'
.format(name, name, name, name, name, weights[0].shape[1]//3, activation, reset_after))
hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3))
hf.write('#define {}_STATE_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3))
hf.write('extern const SparseGRULayer {};\n\n'.format(name));
return True
def dump_gru_layer(self, f, hf): def dump_gru_layer(self, f, hf):
global max_rnn_neurons global max_rnn_neurons
name = self.name name = self.name
@ -205,6 +245,8 @@ for i, layer in enumerate(model.layers):
if layer.dump_layer(f, hf): if layer.dump_layer(f, hf):
layer_list.append(layer.name) layer_list.append(layer.name)
dump_sparse_gru(model.get_layer('gru_a'), f, hf)
hf.write('#define MAX_RNN_NEURONS {}\n\n'.format(max_rnn_neurons)) hf.write('#define MAX_RNN_NEURONS {}\n\n'.format(max_rnn_neurons))
hf.write('#define MAX_CONV_INPUTS {}\n\n'.format(max_conv_inputs)) hf.write('#define MAX_CONV_INPUTS {}\n\n'.format(max_conv_inputs))
hf.write('#define MAX_MDENSE_TMP {}\n\n'.format(max_mdense_tmp)) hf.write('#define MAX_MDENSE_TMP {}\n\n'.format(max_mdense_tmp))

View file

@ -122,7 +122,8 @@ void run_sample_network(NNetState *net, float *pdf, const float *condition, cons
accum_embedding(&gru_a_embed_sig, gru_a_input, last_sig); accum_embedding(&gru_a_embed_sig, gru_a_input, last_sig);
accum_embedding(&gru_a_embed_pred, gru_a_input, pred); accum_embedding(&gru_a_embed_pred, gru_a_input, pred);
accum_embedding(&gru_a_embed_exc, gru_a_input, last_exc); accum_embedding(&gru_a_embed_exc, gru_a_input, last_exc);
compute_gru3(&gru_a, net->gru_a_state, gru_a_input); /*compute_gru3(&gru_a, net->gru_a_state, gru_a_input);*/
compute_sparse_gru(&sparse_gru_a, net->gru_a_state, gru_a_input);
RNN_COPY(in_b, net->gru_a_state, GRU_A_STATE_SIZE); RNN_COPY(in_b, net->gru_a_state, GRU_A_STATE_SIZE);
RNN_COPY(&in_b[GRU_A_STATE_SIZE], condition, FEATURE_DENSE2_OUT_SIZE); RNN_COPY(&in_b[GRU_A_STATE_SIZE], condition, FEATURE_DENSE2_OUT_SIZE);
compute_gru2(&gru_b, net->gru_b_state, in_b); compute_gru2(&gru_b, net->gru_b_state, in_b);

View file

@ -105,6 +105,38 @@ static void gemm_accum16(float *out, const float *weights, int rows, int cols, i
_mm256_storeu_ps (&y[8], vy8); _mm256_storeu_ps (&y[8], vy8);
} }
} }
static void sparse_gemm_accum16(float *out, const float *weights, int rows, const int *idx, const float *x)
{
int i, j;
for (i=0;i<rows;i+=16)
{
float * restrict y;
int cols;
__m256 vy0, vy8;
y = &out[i];
vy0 = _mm256_loadu_ps(&y[0]);
vy8 = _mm256_loadu_ps(&y[8]);
cols = *idx++;
for (j=0;j<cols;j++)
{
int id;
__m256 vxj;
__m256 vw;
id = *idx++;
vxj = _mm256_broadcast_ss(&x[id]);
vw = _mm256_loadu_ps(&weights[0]);
vy0 = _mm256_fmadd_ps(vw, vxj, vy0);
vw = _mm256_loadu_ps(&weights[8]);
vy8 = _mm256_fmadd_ps(vw, vxj, vy8);
weights += 16;
}
_mm256_storeu_ps (&y[0], vy0);
_mm256_storeu_ps (&y[8], vy8);
}
}
#else #else
static void gemm_accum16(float *out, const float *weights, int rows, int cols, int col_stride, const float *x) static void gemm_accum16(float *out, const float *weights, int rows, int cols, int col_stride, const float *x)
{ {
@ -358,6 +390,43 @@ void compute_gru3(const GRULayer *gru, float *state, const float *input)
state[i] = h[i]; state[i] = h[i];
} }
void compute_sparse_gru(const SparseGRULayer *gru, float *state, const float *input)
{
int i, k;
int N;
float zrh[3*MAX_RNN_NEURONS];
float recur[3*MAX_RNN_NEURONS];
float *z;
float *r;
float *h;
N = gru->nb_neurons;
z = zrh;
r = &zrh[N];
h = &zrh[2*N];
celt_assert(gru->nb_neurons <= MAX_RNN_NEURONS);
celt_assert(input != state);
celt_assert(gru->reset_after);
RNN_COPY(zrh, input, 3*N);
for (i=0;i<3*N;i++)
recur[i] = gru->bias[3*N + i];
for (k=0;k<3;k++)
{
for (i=0;i<N;i++)
recur[k*N + i] += gru->diag_weights[k*N + i]*state[i];
}
sparse_gemm_accum16(recur, gru->recurrent_weights, 3*N, gru->idx, state);
for (i=0;i<2*N;i++)
zrh[i] += recur[i];
compute_activation(zrh, zrh, 2*N, ACTIVATION_SIGMOID);
for (i=0;i<N;i++)
h[i] += recur[2*N+i]*r[i];
compute_activation(h, h, N, gru->activation);
for (i=0;i<N;i++)
h[i] = z[i]*state[i] + (1-z[i])*h[i];
for (i=0;i<N;i++)
state[i] = h[i];
}
void compute_conv1d(const Conv1DLayer *layer, float *output, float *mem, const float *input) void compute_conv1d(const Conv1DLayer *layer, float *output, float *mem, const float *input)
{ {
int i; int i;

View file

@ -62,6 +62,16 @@ typedef struct {
int reset_after; int reset_after;
} GRULayer; } GRULayer;
typedef struct {
const float *bias;
const float *diag_weights;
const float *recurrent_weights;
const int *idx;
int nb_neurons;
int activation;
int reset_after;
} SparseGRULayer;
typedef struct { typedef struct {
const float *bias; const float *bias;
const float *input_weights; const float *input_weights;
@ -89,6 +99,8 @@ void compute_gru2(const GRULayer *gru, float *state, const float *input);
void compute_gru3(const GRULayer *gru, float *state, const float *input); void compute_gru3(const GRULayer *gru, float *state, const float *input);
void compute_sparse_gru(const SparseGRULayer *gru, float *state, const float *input);
void compute_conv1d(const Conv1DLayer *layer, float *output, float *mem, const float *input); void compute_conv1d(const Conv1DLayer *layer, float *output, float *mem, const float *input);
void compute_embedding(const EmbeddingLayer *layer, float *output, int input); void compute_embedding(const EmbeddingLayer *layer, float *output, int input);