Cleanup, de-inlining some math functions
This commit is contained in:
parent
802f6eab9b
commit
48923ae996
7 changed files with 204 additions and 227 deletions
|
@ -42,66 +42,13 @@
|
|||
#include "entcode.h"
|
||||
#include "os_support.h"
|
||||
|
||||
|
||||
|
||||
#ifndef OVERRIDE_FIND_MAX16
|
||||
static inline int find_max16(celt_word16 *x, int len)
|
||||
{
|
||||
celt_word16 max_corr=-VERY_LARGE16;
|
||||
int i, id = 0;
|
||||
for (i=0;i<len;i++)
|
||||
{
|
||||
if (x[i] > max_corr)
|
||||
{
|
||||
id = i;
|
||||
max_corr = x[i];
|
||||
}
|
||||
}
|
||||
return id;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifndef OVERRIDE_FIND_MAX32
|
||||
static inline int find_max32(celt_word32 *x, int len)
|
||||
{
|
||||
celt_word32 max_corr=-VERY_LARGE32;
|
||||
int i, id = 0;
|
||||
for (i=0;i<len;i++)
|
||||
{
|
||||
if (x[i] > max_corr)
|
||||
{
|
||||
id = i;
|
||||
max_corr = x[i];
|
||||
}
|
||||
}
|
||||
return id;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Multiplies two 16-bit fractional values. Bit-exactness of this macro is important */
|
||||
#define FRAC_MUL16(a,b) ((16384+((celt_int32)(celt_int16)(a)*(celt_int16)(b)))>>15)
|
||||
|
||||
/* This is a cos() approximation designed to be bit-exact on any platform. Bit exactness
|
||||
with this approximation is important because it has an impact on the bit allocation */
|
||||
static inline celt_int16 bitexact_cos(celt_int16 x)
|
||||
{
|
||||
celt_int32 tmp;
|
||||
celt_int16 x2;
|
||||
tmp = (4096+((celt_int32)(x)*(x)))>>13;
|
||||
if (tmp > 32767)
|
||||
tmp = 32767;
|
||||
x2 = tmp;
|
||||
x2 = (32767-x2) + FRAC_MUL16(x2, (-7651 + FRAC_MUL16(x2, (8277 + FRAC_MUL16(-626, x2)))));
|
||||
if (x2 > 32766)
|
||||
x2 = 32766;
|
||||
return 1+x2;
|
||||
}
|
||||
|
||||
|
||||
#ifndef FIXED_POINT
|
||||
|
||||
#define celt_sqrt(x) ((float)sqrt(x))
|
||||
#define celt_psqrt(x) ((float)sqrt(x))
|
||||
#define celt_rsqrt(x) (1.f/celt_sqrt(x))
|
||||
#define celt_rsqrt_norm(x) (celt_rsqrt(x))
|
||||
#define celt_acos acos
|
||||
|
@ -195,119 +142,12 @@ static inline celt_int16 celt_zlog2(celt_word32 x)
|
|||
return x <= 0 ? 0 : celt_ilog2(x);
|
||||
}
|
||||
|
||||
/** Reciprocal sqrt approximation in the range [0.25,1) (Q16 in, Q14 out) */
|
||||
static inline celt_word16 celt_rsqrt_norm(celt_word32 x)
|
||||
{
|
||||
celt_word16 n;
|
||||
celt_word16 r;
|
||||
celt_word16 r2;
|
||||
celt_word16 y;
|
||||
/* Range of n is [-16384,32767] ([-0.5,1) in Q15). */
|
||||
n = x-32768;
|
||||
/* Get a rough initial guess for the root.
|
||||
The optimal minimax quadratic approximation (using relative error) is
|
||||
r = 1.437799046117536+n*(-0.823394375837328+n*0.4096419668459485).
|
||||
Coefficients here, and the final result r, are Q14.*/
|
||||
r = ADD16(23557, MULT16_16_Q15(n, ADD16(-13490, MULT16_16_Q15(n, 6713))));
|
||||
/* We want y = x*r*r-1 in Q15, but x is 32-bit Q16 and r is Q14.
|
||||
We can compute the result from n and r using Q15 multiplies with some
|
||||
adjustment, carefully done to avoid overflow.
|
||||
Range of y is [-1564,1594]. */
|
||||
r2 = MULT16_16_Q15(r, r);
|
||||
y = SHL16(SUB16(ADD16(MULT16_16_Q15(r2, n), r2), 16384), 1);
|
||||
/* Apply a 2nd-order Householder iteration: r += r*y*(y*0.375-0.5).
|
||||
This yields the Q14 reciprocal square root of the Q16 x, with a maximum
|
||||
relative error of 1.04956E-4, a (relative) RMSE of 2.80979E-5, and a
|
||||
peak absolute error of 2.26591/16384. */
|
||||
return ADD16(r, MULT16_16_Q15(r, MULT16_16_Q15(y,
|
||||
SUB16(MULT16_16_Q15(y, 12288), 16384))));
|
||||
}
|
||||
celt_word16 celt_rsqrt_norm(celt_word32 x);
|
||||
|
||||
/** Reciprocal sqrt approximation (Q30 input, Q0 output or equivalent) */
|
||||
static inline celt_word32 celt_rsqrt(celt_word32 x)
|
||||
{
|
||||
int k;
|
||||
k = celt_ilog2(x)>>1;
|
||||
x = VSHR32(x, (k-7)<<1);
|
||||
return PSHR32(celt_rsqrt_norm(x), k);
|
||||
}
|
||||
celt_word32 celt_sqrt(celt_word32 x);
|
||||
|
||||
/** Sqrt approximation (QX input, QX/2 output) */
|
||||
static inline celt_word32 celt_sqrt(celt_word32 x)
|
||||
{
|
||||
int k;
|
||||
celt_word16 n;
|
||||
celt_word32 rt;
|
||||
static const celt_word16 C[5] = {23175, 11561, -3011, 1699, -664};
|
||||
if (x==0)
|
||||
return 0;
|
||||
k = (celt_ilog2(x)>>1)-7;
|
||||
x = VSHR32(x, (k<<1));
|
||||
n = x-32768;
|
||||
rt = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2],
|
||||
MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, (C[4])))))))));
|
||||
rt = VSHR32(rt,7-k);
|
||||
return rt;
|
||||
}
|
||||
celt_word16 celt_cos_norm(celt_word32 x);
|
||||
|
||||
/** Sqrt approximation (QX input, QX/2 output) that assumes that the input is
|
||||
strictly positive */
|
||||
static inline celt_word32 celt_psqrt(celt_word32 x)
|
||||
{
|
||||
int k;
|
||||
celt_word16 n;
|
||||
celt_word32 rt;
|
||||
static const celt_word16 C[5] = {23175, 11561, -3011, 1699, -664};
|
||||
k = (celt_ilog2(x)>>1)-7;
|
||||
x = VSHR32(x, (k<<1));
|
||||
n = x-32768;
|
||||
rt = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2],
|
||||
MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, (C[4])))))))));
|
||||
rt = VSHR32(rt,7-k);
|
||||
return rt;
|
||||
}
|
||||
|
||||
#define L1 32767
|
||||
#define L2 -7651
|
||||
#define L3 8277
|
||||
#define L4 -626
|
||||
|
||||
static inline celt_word16 _celt_cos_pi_2(celt_word16 x)
|
||||
{
|
||||
celt_word16 x2;
|
||||
|
||||
x2 = MULT16_16_P15(x,x);
|
||||
return ADD16(1,MIN16(32766,ADD32(SUB16(L1,x2), MULT16_16_P15(x2, ADD32(L2, MULT16_16_P15(x2, ADD32(L3, MULT16_16_P15(L4, x2
|
||||
))))))));
|
||||
}
|
||||
|
||||
#undef L1
|
||||
#undef L2
|
||||
#undef L3
|
||||
#undef L4
|
||||
|
||||
static inline celt_word16 celt_cos_norm(celt_word32 x)
|
||||
{
|
||||
x = x&0x0001ffff;
|
||||
if (x>SHL32(EXTEND32(1), 16))
|
||||
x = SUB32(SHL32(EXTEND32(1), 17),x);
|
||||
if (x&0x00007fff)
|
||||
{
|
||||
if (x<SHL32(EXTEND32(1), 15))
|
||||
{
|
||||
return _celt_cos_pi_2(EXTRACT16(x));
|
||||
} else {
|
||||
return NEG32(_celt_cos_pi_2(EXTRACT16(65536-x)));
|
||||
}
|
||||
} else {
|
||||
if (x&0x0000ffff)
|
||||
return 0;
|
||||
else if (x&0x0001ffff)
|
||||
return -32767;
|
||||
else
|
||||
return 32767;
|
||||
}
|
||||
}
|
||||
|
||||
static inline celt_word16 celt_log2(celt_word32 x)
|
||||
{
|
||||
|
@ -349,52 +189,11 @@ static inline celt_word32 celt_exp2(celt_word16 x)
|
|||
return VSHR32(EXTEND32(frac), -integer-2);
|
||||
}
|
||||
|
||||
/** Reciprocal approximation (Q15 input, Q16 output) */
|
||||
static inline celt_word32 celt_rcp(celt_word32 x)
|
||||
{
|
||||
int i;
|
||||
celt_word16 n;
|
||||
celt_word16 r;
|
||||
celt_assert2(x>0, "celt_rcp() only defined for positive values");
|
||||
i = celt_ilog2(x);
|
||||
/* n is Q15 with range [0,1). */
|
||||
n = VSHR32(x,i-15)-32768;
|
||||
/* Start with a linear approximation:
|
||||
r = 1.8823529411764706-0.9411764705882353*n.
|
||||
The coefficients and the result are Q14 in the range [15420,30840].*/
|
||||
r = ADD16(30840, MULT16_16_Q15(-15420, n));
|
||||
/* Perform two Newton iterations:
|
||||
r -= r*((r*n)-1.Q15)
|
||||
= r*((r*n)+(r-1.Q15)). */
|
||||
r = SUB16(r, MULT16_16_Q15(r,
|
||||
ADD16(MULT16_16_Q15(r, n), ADD16(r, -32768))));
|
||||
/* We subtract an extra 1 in the second iteration to avoid overflow; it also
|
||||
neatly compensates for truncation error in the rest of the process. */
|
||||
r = SUB16(r, ADD16(1, MULT16_16_Q15(r,
|
||||
ADD16(MULT16_16_Q15(r, n), ADD16(r, -32768)))));
|
||||
/* r is now the Q15 solution to 2/(n+1), with a maximum relative error
|
||||
of 7.05346E-5, a (relative) RMSE of 2.14418E-5, and a peak absolute
|
||||
error of 1.24665/32768. */
|
||||
return VSHR32(EXTEND32(r),i-16);
|
||||
}
|
||||
celt_word32 celt_rcp(celt_word32 x);
|
||||
|
||||
#define celt_div(a,b) MULT32_32_Q31((celt_word32)(a),celt_rcp(b))
|
||||
|
||||
static inline celt_word32 frac_div32(celt_word32 a, celt_word32 b)
|
||||
{
|
||||
celt_word16 rcp;
|
||||
celt_word32 result, rem;
|
||||
int shift = 30-celt_ilog2(b);
|
||||
a = SHL32(a,shift);
|
||||
b = SHL32(b,shift);
|
||||
|
||||
/* 16-bit reciprocal */
|
||||
rcp = ROUND16(celt_rcp(ROUND16(b,16)),2);
|
||||
result = SHL32(MULT16_32_Q15(rcp, a),1);
|
||||
rem = a-MULT32_32_Q31(result, b);
|
||||
result += SHL32(MULT16_32_Q15(rcp, rem),1);
|
||||
return result;
|
||||
}
|
||||
celt_word32 frac_div32(celt_word32 a, celt_word32 b);
|
||||
|
||||
#define M1 32767
|
||||
#define M2 -21
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue