mirror of
https://github.com/xiph/opus.git
synced 2025-05-14 15:38:32 +00:00
Adding the scripts used to train the RNN classifier
Sorry, no doc for now
This commit is contained in:
parent
59f8e5e4f8
commit
3ff7e1ae2d
2 changed files with 243 additions and 0 deletions
66
training/rnn_dump.py
Executable file
66
training/rnn_dump.py
Executable file
|
@ -0,0 +1,66 @@
|
|||
#!/usr/bin/python
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
from keras.models import Sequential
|
||||
from keras.models import Model
|
||||
from keras.layers import Input
|
||||
from keras.layers import Dense
|
||||
from keras.layers import LSTM
|
||||
from keras.layers import GRU
|
||||
from keras.models import load_model
|
||||
from keras import backend as K
|
||||
import sys
|
||||
|
||||
import numpy as np
|
||||
|
||||
def printVector(f, vector, name):
|
||||
v = np.reshape(vector, (-1));
|
||||
#print('static const float ', name, '[', len(v), '] = \n', file=f)
|
||||
f.write('static const opus_int8 {}[{}] = {{\n '.format(name, len(v)))
|
||||
for i in range(0, len(v)):
|
||||
f.write('{}'.format(max(-128,min(127,int(round(128*v[i]))))))
|
||||
if (i!=len(v)-1):
|
||||
f.write(',')
|
||||
else:
|
||||
break;
|
||||
if (i%8==7):
|
||||
f.write("\n ")
|
||||
else:
|
||||
f.write(" ")
|
||||
#print(v, file=f)
|
||||
f.write('\n};\n\n')
|
||||
return;
|
||||
|
||||
def binary_crossentrop2(y_true, y_pred):
|
||||
return K.mean(2*K.abs(y_true-0.5) * K.binary_crossentropy(y_pred, y_true), axis=-1)
|
||||
|
||||
|
||||
#model = load_model(sys.argv[1], custom_objects={'binary_crossentrop2': binary_crossentrop2})
|
||||
main_input = Input(shape=(None, 25), name='main_input')
|
||||
x = Dense(32, activation='tanh')(main_input)
|
||||
x = GRU(24, activation='tanh', recurrent_activation='sigmoid', return_sequences=True)(x)
|
||||
x = Dense(2, activation='sigmoid')(x)
|
||||
model = Model(inputs=main_input, outputs=x)
|
||||
model.load_weights(sys.argv[1])
|
||||
|
||||
weights = model.get_weights()
|
||||
|
||||
f = open(sys.argv[2], 'w')
|
||||
|
||||
f.write('/*This file is automatically generated from a Keras model*/\n\n')
|
||||
f.write('#ifdef HAVE_CONFIG_H\n#include "config.h"\n#endif\n\n#include "mlp.h"\n\n')
|
||||
|
||||
printVector(f, weights[0], 'layer0_weights')
|
||||
printVector(f, weights[1], 'layer0_bias')
|
||||
printVector(f, weights[2], 'layer1_weights')
|
||||
printVector(f, weights[3], 'layer1_recur_weights')
|
||||
printVector(f, weights[4], 'layer1_bias')
|
||||
printVector(f, weights[5], 'layer2_weights')
|
||||
printVector(f, weights[6], 'layer2_bias')
|
||||
|
||||
f.write('const DenseLayer layer0 = {\n layer0_bias,\n layer0_weights,\n 25, 32, 0\n};\n\n')
|
||||
f.write('const GRULayer layer1 = {\n layer1_bias,\n layer1_weights,\n layer1_recur_weights,\n 32, 24\n};\n\n')
|
||||
f.write('const DenseLayer layer2 = {\n layer2_bias,\n layer2_weights,\n 24, 2, 1\n};\n\n')
|
||||
|
||||
f.close()
|
177
training/rnn_train.py
Executable file
177
training/rnn_train.py
Executable file
|
@ -0,0 +1,177 @@
|
|||
#!/usr/bin/python3
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
from keras.models import Sequential
|
||||
from keras.models import Model
|
||||
from keras.layers import Input
|
||||
from keras.layers import Dense
|
||||
from keras.layers import LSTM
|
||||
from keras.layers import GRU
|
||||
from keras.layers import CuDNNGRU
|
||||
from keras.layers import SimpleRNN
|
||||
from keras.layers import Dropout
|
||||
from keras import losses
|
||||
import h5py
|
||||
from keras.optimizers import Adam
|
||||
|
||||
from keras.constraints import Constraint
|
||||
from keras import backend as K
|
||||
import numpy as np
|
||||
|
||||
import tensorflow as tf
|
||||
from keras.backend.tensorflow_backend import set_session
|
||||
config = tf.ConfigProto()
|
||||
config.gpu_options.per_process_gpu_memory_fraction = 0.44
|
||||
set_session(tf.Session(config=config))
|
||||
|
||||
def binary_crossentrop2(y_true, y_pred):
|
||||
return K.mean(2*K.abs(y_true-0.5) * K.binary_crossentropy(y_true, y_pred), axis=-1)
|
||||
|
||||
def binary_accuracy2(y_true, y_pred):
|
||||
return K.mean(K.cast(K.equal(y_true, K.round(y_pred)), 'float32') + K.cast(K.equal(y_true, 0.5), 'float32'), axis=-1)
|
||||
|
||||
def quant_model(model):
|
||||
weights = model.get_weights()
|
||||
for k in range(len(weights)):
|
||||
weights[k] = np.maximum(-128, np.minimum(127, np.round(128*weights[k])*0.0078125))
|
||||
model.set_weights(weights)
|
||||
|
||||
class WeightClip(Constraint):
|
||||
'''Clips the weights incident to each hidden unit to be inside a range
|
||||
'''
|
||||
def __init__(self, c=2):
|
||||
self.c = c
|
||||
|
||||
def __call__(self, p):
|
||||
return K.clip(p, -self.c, self.c)
|
||||
|
||||
def get_config(self):
|
||||
return {'name': self.__class__.__name__,
|
||||
'c': self.c}
|
||||
|
||||
reg = 0.000001
|
||||
constraint = WeightClip(.998)
|
||||
|
||||
print('Build model...')
|
||||
|
||||
main_input = Input(shape=(None, 25), name='main_input')
|
||||
x = Dense(32, activation='tanh', kernel_constraint=constraint, bias_constraint=constraint)(main_input)
|
||||
#x = CuDNNGRU(24, return_sequences=True, kernel_constraint=constraint, recurrent_constraint=constraint, bias_constraint=constraint)(x)
|
||||
x = GRU(24, recurrent_activation='sigmoid', activation='tanh', return_sequences=True, kernel_constraint=constraint, recurrent_constraint=constraint, bias_constraint=constraint)(x)
|
||||
x = Dense(2, activation='sigmoid', kernel_constraint=constraint, bias_constraint=constraint)(x)
|
||||
model = Model(inputs=main_input, outputs=x)
|
||||
|
||||
batch_size = 2048
|
||||
|
||||
print('Loading data...')
|
||||
with h5py.File('features10b.h5', 'r') as hf:
|
||||
all_data = hf['data'][:]
|
||||
print('done.')
|
||||
|
||||
window_size = 1500
|
||||
|
||||
nb_sequences = len(all_data)//window_size
|
||||
print(nb_sequences, ' sequences')
|
||||
x_train = all_data[:nb_sequences*window_size, :-2]
|
||||
x_train = np.reshape(x_train, (nb_sequences, window_size, 25))
|
||||
|
||||
y_train = np.copy(all_data[:nb_sequences*window_size, -2:])
|
||||
y_train = np.reshape(y_train, (nb_sequences, window_size, 2))
|
||||
|
||||
print("Marking ignores")
|
||||
for s in y_train:
|
||||
for e in s:
|
||||
if (e[1] >= 1):
|
||||
break
|
||||
e[0] = 0.5
|
||||
|
||||
all_data = 0;
|
||||
x_train = x_train.astype('float32')
|
||||
y_train = y_train.astype('float32')
|
||||
|
||||
print(len(x_train), 'train sequences. x shape =', x_train.shape, 'y shape = ', y_train.shape)
|
||||
|
||||
model.load_weights('newweights10a1b_ep206.hdf5')
|
||||
|
||||
#weights = model.get_weights()
|
||||
#for k in range(len(weights)):
|
||||
# weights[k] = np.round(128*weights[k])*0.0078125
|
||||
#model.set_weights(weights)
|
||||
|
||||
# try using different optimizers and different optimizer configs
|
||||
model.compile(loss=binary_crossentrop2,
|
||||
optimizer=Adam(0.0001),
|
||||
metrics=[binary_accuracy2])
|
||||
|
||||
print('Train...')
|
||||
quant_model(model)
|
||||
model.fit(x_train, y_train,
|
||||
batch_size=batch_size,
|
||||
epochs=10, validation_data=(x_train, y_train))
|
||||
model.save("newweights10a1c_ep10.hdf5")
|
||||
|
||||
quant_model(model)
|
||||
model.fit(x_train, y_train,
|
||||
batch_size=batch_size,
|
||||
epochs=50, initial_epoch=10)
|
||||
model.save("newweights10a1c_ep50.hdf5")
|
||||
|
||||
model.compile(loss=binary_crossentrop2,
|
||||
optimizer=Adam(0.0001),
|
||||
metrics=[binary_accuracy2])
|
||||
|
||||
quant_model(model)
|
||||
model.fit(x_train, y_train,
|
||||
batch_size=batch_size,
|
||||
epochs=100, initial_epoch=50)
|
||||
model.save("newweights10a1c_ep100.hdf5")
|
||||
|
||||
quant_model(model)
|
||||
model.fit(x_train, y_train,
|
||||
batch_size=batch_size,
|
||||
epochs=150, initial_epoch=100)
|
||||
model.save("newweights10a1c_ep150.hdf5")
|
||||
|
||||
quant_model(model)
|
||||
model.fit(x_train, y_train,
|
||||
batch_size=batch_size,
|
||||
epochs=200, initial_epoch=150)
|
||||
model.save("newweights10a1c_ep200.hdf5")
|
||||
|
||||
quant_model(model)
|
||||
model.fit(x_train, y_train,
|
||||
batch_size=batch_size,
|
||||
epochs=201, initial_epoch=200)
|
||||
model.save("newweights10a1c_ep201.hdf5")
|
||||
|
||||
quant_model(model)
|
||||
model.fit(x_train, y_train,
|
||||
batch_size=batch_size,
|
||||
epochs=202, initial_epoch=201, validation_data=(x_train, y_train))
|
||||
model.save("newweights10a1c_ep202.hdf5")
|
||||
|
||||
quant_model(model)
|
||||
model.fit(x_train, y_train,
|
||||
batch_size=batch_size,
|
||||
epochs=203, initial_epoch=202, validation_data=(x_train, y_train))
|
||||
model.save("newweights10a1c_ep203.hdf5")
|
||||
|
||||
quant_model(model)
|
||||
model.fit(x_train, y_train,
|
||||
batch_size=batch_size,
|
||||
epochs=204, initial_epoch=203, validation_data=(x_train, y_train))
|
||||
model.save("newweights10a1c_ep204.hdf5")
|
||||
|
||||
quant_model(model)
|
||||
model.fit(x_train, y_train,
|
||||
batch_size=batch_size,
|
||||
epochs=205, initial_epoch=204, validation_data=(x_train, y_train))
|
||||
model.save("newweights10a1c_ep205.hdf5")
|
||||
|
||||
quant_model(model)
|
||||
model.fit(x_train, y_train,
|
||||
batch_size=batch_size,
|
||||
epochs=206, initial_epoch=205, validation_data=(x_train, y_train))
|
||||
model.save("newweights10a1c_ep206.hdf5")
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue