Splitting off the recursion in quant_partition()

quant_band() now only handles the level0 case.
This commit is contained in:
Jean-Marc Valin 2012-12-19 11:04:16 -05:00
parent 4ffbf21174
commit 3d6c341867

View file

@ -852,28 +852,22 @@ static unsigned quant_band_n1(int encode, celt_norm *X, celt_norm *Y, int b,
return 1;
}
/* This function is responsible for encoding and decoding a band the mono
case. It can split the band in two and transmit the energy difference with
/* This function is responsible for encoding and decoding a mono partition.
It can split the band in two and transmit the energy difference with
the two half-bands. It can be called recursively so bands can end up being
split in 8 parts. */
static unsigned quant_band(int encode, const CELTMode *m, int i, celt_norm *X,
static unsigned quant_partition(int encode, const CELTMode *m, int i, celt_norm *X,
int N, int b, int spread, int B, int intensity, int tf_change, celt_norm *lowband, ec_ctx *ec,
opus_int32 *remaining_bits, int LM, celt_norm *lowband_out, const celt_ener *bandE, int level,
opus_int32 *remaining_bits, int LM,
opus_uint32 *seed, opus_val16 gain, celt_norm *lowband_scratch, int fill)
{
const unsigned char *cache;
int q;
int curr_bits;
int split;
int imid=0, iside=0;
int N0=N;
int N_B=N;
int N_B0;
int B0=B;
int time_divide=0;
int recombine=0;
opus_val16 mid=0, side=0;
int longBlocks;
unsigned cm=0;
#ifdef RESYNTH
int resynth = 1;
@ -882,96 +876,25 @@ static unsigned quant_band(int encode, const CELTMode *m, int i, celt_norm *X,
#endif
celt_norm *Y=NULL;
longBlocks = B0==1;
N_B /= B;
N_B0 = N_B;
split = 0;
/* Special case for one sample */
if (N==1)
{
return quant_band_n1(encode, X, NULL, b, remaining_bits, ec, lowband_out);
}
if (level == 0)
{
int k;
if (tf_change>0)
recombine = tf_change;
/* Band recombining to increase frequency resolution */
if (lowband_scratch && lowband && (recombine || ((N_B&1) == 0 && tf_change<0) || B0>1))
{
int j;
for (j=0;j<N;j++)
lowband_scratch[j] = lowband[j];
lowband = lowband_scratch;
}
for (k=0;k<recombine;k++)
{
static const unsigned char bit_interleave_table[16]={
0,1,1,1,2,3,3,3,2,3,3,3,2,3,3,3
};
if (encode)
haar1(X, N>>k, 1<<k);
if (lowband)
haar1(lowband, N>>k, 1<<k);
fill = bit_interleave_table[fill&0xF]|bit_interleave_table[fill>>4]<<2;
}
B>>=recombine;
N_B<<=recombine;
/* Increasing the time resolution */
while ((N_B&1) == 0 && tf_change<0)
{
if (encode)
haar1(X, N_B, B);
if (lowband)
haar1(lowband, N_B, B);
fill |= fill<<B;
B <<= 1;
N_B >>= 1;
time_divide++;
tf_change++;
}
B0=B;
N_B0 = N_B;
/* Reorganize the samples in time order instead of frequency order */
if (B0>1)
{
if (encode)
deinterleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks);
if (lowband)
deinterleave_hadamard(lowband, N_B>>recombine, B0<<recombine, longBlocks);
}
}
/* If we need 1.5 more bit than we can produce, split the band in two. */
cache = m->cache.bits + m->cache.index[(LM+1)*m->nbEBands+i];
if (LM != -1 && b > cache[cache[0]]+12 && N>2)
{
N >>= 1;
Y = X+N;
split = 1;
LM -= 1;
if (B==1)
fill = (fill&1)|(fill<<1);
B = (B+1)>>1;
}
if (split)
{
int mbits, sbits, delta;
int itheta;
int qalloc;
struct split_ctx ctx;
N >>= 1;
Y = X+N;
LM -= 1;
if (B==1)
fill = (fill&1)|(fill<<1);
B = (B+1)>>1;
compute_theta(&ctx, encode, m, i, X, Y, N, &b, B, B0, intensity, ec,
remaining_bits, LM, bandE, 0, &fill);
remaining_bits, LM, NULL, 0, &fill);
imid = ctx.imid;
iside = ctx.iside;
delta = ctx.delta;
@ -991,8 +914,6 @@ static unsigned quant_band(int encode, const CELTMode *m, int i, celt_norm *X,
{
/* "Normal" split code */
celt_norm *next_lowband2=NULL;
celt_norm *next_lowband_out1=NULL;
int next_level=0;
opus_int32 rebalance;
/* Give more bits to low-energy MDCTs than they would otherwise deserve */
@ -1012,41 +933,37 @@ static unsigned quant_band(int encode, const CELTMode *m, int i, celt_norm *X,
if (lowband)
next_lowband2 = lowband+N; /* >32-bit split case */
/* Only stereo needs to pass on lowband_out. Otherwise, it's
handled at the end */
next_level = level+1;
rebalance = *remaining_bits;
if (mbits >= sbits)
{
/* In stereo mode, we do not apply a scaling to the mid because we need the normalized
mid for folding later */
cm = quant_band(encode, m, i, X, N, mbits, spread, B, intensity, tf_change,
lowband, ec, remaining_bits, LM, next_lowband_out1,
NULL, next_level, seed, MULT16_16_P15(gain,mid), lowband_scratch, fill);
cm = quant_partition(encode, m, i, X, N, mbits, spread, B, intensity, tf_change,
lowband, ec, remaining_bits, LM,
seed, MULT16_16_P15(gain,mid), lowband_scratch, fill);
rebalance = mbits - (rebalance-*remaining_bits);
if (rebalance > 3<<BITRES && itheta!=0)
sbits += rebalance - (3<<BITRES);
/* For a stereo split, the high bits of fill are always zero, so no
folding will be done to the side. */
cm |= quant_band(encode, m, i, Y, N, sbits, spread, B, intensity, tf_change,
next_lowband2, ec, remaining_bits, LM, NULL,
NULL, next_level, seed, MULT16_16_P15(gain,side), NULL, fill>>B)<<((B0>>1)&(-1));
cm |= quant_partition(encode, m, i, Y, N, sbits, spread, B, intensity, tf_change,
next_lowband2, ec, remaining_bits, LM,
seed, MULT16_16_P15(gain,side), NULL, fill>>B)<<((B0>>1)&(-1));
} else {
/* For a stereo split, the high bits of fill are always zero, so no
folding will be done to the side. */
cm = quant_band(encode, m, i, Y, N, sbits, spread, B, intensity, tf_change,
next_lowband2, ec, remaining_bits, LM, NULL,
NULL, next_level, seed, MULT16_16_P15(gain,side), NULL, fill>>B)<<((B0>>1)&(-1));
cm = quant_partition(encode, m, i, Y, N, sbits, spread, B, intensity, tf_change,
next_lowband2, ec, remaining_bits, LM,
seed, MULT16_16_P15(gain,side), NULL, fill>>B)<<((B0>>1)&(-1));
rebalance = sbits - (rebalance-*remaining_bits);
if (rebalance > 3<<BITRES && itheta!=16384)
mbits += rebalance - (3<<BITRES);
/* In stereo mode, we do not apply a scaling to the mid because we need the normalized
mid for folding later */
cm |= quant_band(encode, m, i, X, N, mbits, spread, B, intensity, tf_change,
lowband, ec, remaining_bits, LM, next_lowband_out1,
NULL, next_level, seed, MULT16_16_P15(gain,mid), lowband_scratch, fill);
cm |= quant_partition(encode, m, i, X, N, mbits, spread, B, intensity, tf_change,
lowband, ec, remaining_bits, LM,
seed, MULT16_16_P15(gain,mid), lowband_scratch, fill);
}
}
@ -1123,10 +1040,101 @@ static unsigned quant_band(int encode, const CELTMode *m, int i, celt_norm *X,
}
}
return cm;
}
/* This function is responsible for encoding and decoding a band for the mono case. */
static unsigned quant_band(int encode, const CELTMode *m, int i, celt_norm *X,
int N, int b, int spread, int B, int intensity, int tf_change, celt_norm *lowband, ec_ctx *ec,
opus_int32 *remaining_bits, int LM, celt_norm *lowband_out,
opus_uint32 *seed, opus_val16 gain, celt_norm *lowband_scratch, int fill)
{
int N0=N;
int N_B=N;
int N_B0;
int B0=B;
int time_divide=0;
int recombine=0;
int longBlocks;
unsigned cm=0;
#ifdef RESYNTH
int resynth = 1;
#else
int resynth = !encode;
#endif
longBlocks = B0==1;
N_B /= B;
N_B0 = N_B;
/* Special case for one sample */
if (N==1)
{
return quant_band_n1(encode, X, NULL, b, remaining_bits, ec, lowband_out);
}
{
int k;
if (tf_change>0)
recombine = tf_change;
/* Band recombining to increase frequency resolution */
if (lowband_scratch && lowband && (recombine || ((N_B&1) == 0 && tf_change<0) || B0>1))
{
int j;
for (j=0;j<N;j++)
lowband_scratch[j] = lowband[j];
lowband = lowband_scratch;
}
for (k=0;k<recombine;k++)
{
static const unsigned char bit_interleave_table[16]={
0,1,1,1,2,3,3,3,2,3,3,3,2,3,3,3
};
if (encode)
haar1(X, N>>k, 1<<k);
if (lowband)
haar1(lowband, N>>k, 1<<k);
fill = bit_interleave_table[fill&0xF]|bit_interleave_table[fill>>4]<<2;
}
B>>=recombine;
N_B<<=recombine;
/* Increasing the time resolution */
while ((N_B&1) == 0 && tf_change<0)
{
if (encode)
haar1(X, N_B, B);
if (lowband)
haar1(lowband, N_B, B);
fill |= fill<<B;
B <<= 1;
N_B >>= 1;
time_divide++;
tf_change++;
}
B0=B;
N_B0 = N_B;
/* Reorganize the samples in time order instead of frequency order */
if (B0>1)
{
if (encode)
deinterleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks);
if (lowband)
deinterleave_hadamard(lowband, N_B>>recombine, B0<<recombine, longBlocks);
}
}
cm = quant_partition(encode, m, i, X, N, b, spread, B, intensity, tf_change, lowband, ec,
remaining_bits, LM, seed, gain, lowband_scratch, fill);
/* This code is used by the decoder and by the resynthesis-enabled encoder */
if (resynth)
{
if (level == 0)
{
int k;
@ -1175,7 +1183,7 @@ static unsigned quant_band(int encode, const CELTMode *m, int i, celt_norm *X,
/* This function is responsible for encoding and decoding a band for the stereo case. */
static unsigned quant_band_stereo(int encode, const CELTMode *m, int i, celt_norm *X, celt_norm *Y,
int N, int b, int spread, int B, int intensity, int tf_change, celt_norm *lowband, ec_ctx *ec,
opus_int32 *remaining_bits, int LM, celt_norm *lowband_out, const celt_ener *bandE, int level,
opus_int32 *remaining_bits, int LM, celt_norm *lowband_out, const celt_ener *bandE,
opus_uint32 *seed, opus_val16 gain, celt_norm *lowband_scratch, int fill)
{
int imid=0, iside=0;
@ -1254,7 +1262,7 @@ static unsigned quant_band_stereo(int encode, const CELTMode *m, int i, celt_nor
sign = 1-2*sign;
/* We use orig_fill here because we want to fold the side, but if
itheta==16384, we'll have cleared the low bits of fill. */
cm = quant_band(encode, m, i, x2, N, mbits, spread, B, intensity, tf_change, lowband, ec, remaining_bits, LM, lowband_out, NULL, level, seed, gain, lowband_scratch, orig_fill);
cm = quant_band(encode, m, i, x2, N, mbits, spread, B, intensity, tf_change, lowband, ec, remaining_bits, LM, lowband_out, seed, gain, lowband_scratch, orig_fill);
/* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse),
and there's no need to worry about mixing with the other channel. */
y2[0] = -sign*x2[1];
@ -1277,7 +1285,6 @@ static unsigned quant_band_stereo(int encode, const CELTMode *m, int i, celt_nor
/* "Normal" split code */
celt_norm *next_lowband2=NULL;
celt_norm *next_lowband_out1=NULL;
int next_level=0;
opus_int32 rebalance;
mbits = IMAX(0, IMIN(b, (b-delta)/2));
@ -1295,7 +1302,7 @@ static unsigned quant_band_stereo(int encode, const CELTMode *m, int i, celt_nor
mid for folding later */
cm = quant_band(encode, m, i, X, N, mbits, spread, B, intensity, tf_change,
lowband, ec, remaining_bits, LM, next_lowband_out1,
NULL, next_level, seed, Q15ONE, lowband_scratch, fill);
seed, Q15ONE, lowband_scratch, fill);
rebalance = mbits - (rebalance-*remaining_bits);
if (rebalance > 3<<BITRES && itheta!=0)
sbits += rebalance - (3<<BITRES);
@ -1304,13 +1311,13 @@ static unsigned quant_band_stereo(int encode, const CELTMode *m, int i, celt_nor
folding will be done to the side. */
cm |= quant_band(encode, m, i, Y, N, sbits, spread, B, intensity, tf_change,
next_lowband2, ec, remaining_bits, LM, NULL,
NULL, next_level, seed, MULT16_16_P15(gain,side), NULL, fill>>B)<<((B>>1)&(1-1));
seed, MULT16_16_P15(gain,side), NULL, fill>>B)<<((B>>1)&(1-1));
} else {
/* For a stereo split, the high bits of fill are always zero, so no
folding will be done to the side. */
cm = quant_band(encode, m, i, Y, N, sbits, spread, B, intensity, tf_change,
next_lowband2, ec, remaining_bits, LM, NULL,
NULL, next_level, seed, MULT16_16_P15(gain,side), NULL, fill>>B)<<((B>>1)&(1-1));
seed, MULT16_16_P15(gain,side), NULL, fill>>B)<<((B>>1)&(1-1));
rebalance = sbits - (rebalance-*remaining_bits);
if (rebalance > 3<<BITRES && itheta!=16384)
mbits += rebalance - (3<<BITRES);
@ -1318,7 +1325,7 @@ static unsigned quant_band_stereo(int encode, const CELTMode *m, int i, celt_nor
mid for folding later */
cm |= quant_band(encode, m, i, X, N, mbits, spread, B, intensity, tf_change,
lowband, ec, remaining_bits, LM, next_lowband_out1,
NULL, next_level, seed, Q15ONE, lowband_scratch, fill);
seed, Q15ONE, lowband_scratch, fill);
}
}
@ -1463,20 +1470,20 @@ void quant_all_bands(int encode, const CELTMode *m, int start, int end,
{
x_cm = quant_band(encode, m, i, X, N, b/2, spread, B, intensity, tf_change,
effective_lowband != -1 ? norm+effective_lowband : NULL, ec, &remaining_bits, LM,
last?NULL:norm+M*eBands[i]-norm_offset, bandE, 0, seed, Q15ONE, lowband_scratch, x_cm);
last?NULL:norm+M*eBands[i]-norm_offset, seed, Q15ONE, lowband_scratch, x_cm);
y_cm = quant_band(encode, m, i, Y, N, b/2, spread, B, intensity, tf_change,
effective_lowband != -1 ? norm2+effective_lowband : NULL, ec, &remaining_bits, LM,
last?NULL:norm2+M*eBands[i]-norm_offset, bandE, 0, seed, Q15ONE, lowband_scratch, y_cm);
last?NULL:norm2+M*eBands[i]-norm_offset, seed, Q15ONE, lowband_scratch, y_cm);
} else {
if (Y!=NULL)
{
x_cm = quant_band_stereo(encode, m, i, X, Y, N, b, spread, B, intensity, tf_change,
effective_lowband != -1 ? norm+effective_lowband : NULL, ec, &remaining_bits, LM,
last?NULL:norm+M*eBands[i]-norm_offset, bandE, 0, seed, Q15ONE, lowband_scratch, x_cm|y_cm);
last?NULL:norm+M*eBands[i]-norm_offset, bandE, seed, Q15ONE, lowband_scratch, x_cm|y_cm);
} else {
x_cm = quant_band(encode, m, i, X, N, b, spread, B, intensity, tf_change,
effective_lowband != -1 ? norm+effective_lowband : NULL, ec, &remaining_bits, LM,
last?NULL:norm+M*eBands[i]-norm_offset, bandE, 0, seed, Q15ONE, lowband_scratch, x_cm|y_cm);
last?NULL:norm+M*eBands[i]-norm_offset, seed, Q15ONE, lowband_scratch, x_cm|y_cm);
}
y_cm = x_cm;
}