mirror of
https://github.com/xiph/opus.git
synced 2025-05-19 09:58:30 +00:00
Add prediction
This commit is contained in:
parent
4fec1144f3
commit
3d20cdaed4
2 changed files with 19 additions and 7 deletions
|
@ -10,7 +10,7 @@ import numpy as np
|
||||||
import h5py
|
import h5py
|
||||||
import sys
|
import sys
|
||||||
|
|
||||||
rnn_units=512
|
rnn_units=64
|
||||||
pcm_bits = 8
|
pcm_bits = 8
|
||||||
pcm_levels = 2**pcm_bits
|
pcm_levels = 2**pcm_bits
|
||||||
nb_used_features = 38
|
nb_used_features = 38
|
||||||
|
@ -41,7 +41,7 @@ class PCMInit(Initializer):
|
||||||
}
|
}
|
||||||
|
|
||||||
def new_wavernn_model():
|
def new_wavernn_model():
|
||||||
pcm = Input(shape=(None, 1))
|
pcm = Input(shape=(None, 2))
|
||||||
pitch = Input(shape=(None, 1))
|
pitch = Input(shape=(None, 1))
|
||||||
feat = Input(shape=(None, nb_used_features))
|
feat = Input(shape=(None, nb_used_features))
|
||||||
dec_feat = Input(shape=(None, 32))
|
dec_feat = Input(shape=(None, 32))
|
||||||
|
@ -61,7 +61,7 @@ def new_wavernn_model():
|
||||||
cpitch = pitch
|
cpitch = pitch
|
||||||
|
|
||||||
embed = Embedding(256, 128, embeddings_initializer=PCMInit())
|
embed = Embedding(256, 128, embeddings_initializer=PCMInit())
|
||||||
cpcm = Reshape((-1, 128))(embed(pcm))
|
cpcm = Reshape((-1, 128*2))(embed(pcm))
|
||||||
|
|
||||||
|
|
||||||
cfeat = fconv2(fconv1(feat))
|
cfeat = fconv2(fconv1(feat))
|
||||||
|
|
|
@ -25,16 +25,18 @@ model, _, _ = lpcnet.new_wavernn_model()
|
||||||
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'])
|
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'])
|
||||||
model.summary()
|
model.summary()
|
||||||
|
|
||||||
pcmfile = sys.argv[1]
|
exc_file = sys.argv[1]
|
||||||
feature_file = sys.argv[2]
|
feature_file = sys.argv[2]
|
||||||
|
pred_file = sys.argv[3]
|
||||||
|
pcm_file = sys.argv[4]
|
||||||
frame_size = 160
|
frame_size = 160
|
||||||
nb_features = 54
|
nb_features = 54
|
||||||
nb_used_features = wavenet.nb_used_features
|
nb_used_features = wavenet.nb_used_features
|
||||||
feature_chunk_size = 15
|
feature_chunk_size = 15
|
||||||
pcm_chunk_size = frame_size*feature_chunk_size
|
pcm_chunk_size = frame_size*feature_chunk_size
|
||||||
|
|
||||||
data = np.fromfile(pcmfile, dtype='int16')
|
data = np.fromfile(pcm_file, dtype='int16')
|
||||||
data = np.minimum(127, lin2ulaw(data[80:]/32768.))
|
data = np.minimum(127, lin2ulaw(data/32768.))
|
||||||
nb_frames = len(data)//pcm_chunk_size
|
nb_frames = len(data)//pcm_chunk_size
|
||||||
|
|
||||||
features = np.fromfile(feature_file, dtype='float32')
|
features = np.fromfile(feature_file, dtype='float32')
|
||||||
|
@ -46,6 +48,13 @@ in_data = np.concatenate([data[0:1], data[:-1]]);
|
||||||
in_data = in_data + np.random.randint(-1, 1, len(data))
|
in_data = in_data + np.random.randint(-1, 1, len(data))
|
||||||
|
|
||||||
features = np.reshape(features, (nb_frames*feature_chunk_size, nb_features))
|
features = np.reshape(features, (nb_frames*feature_chunk_size, nb_features))
|
||||||
|
|
||||||
|
pred = np.fromfile(pred_file, dtype='int16')
|
||||||
|
pred = pred[:nb_frames*pcm_chunk_size]
|
||||||
|
pred = np.minimum(127, lin2ulaw(pred/32768.))
|
||||||
|
pred = pred + np.random.randint(-1, 1, len(data))
|
||||||
|
|
||||||
|
|
||||||
pitch = 1.*data
|
pitch = 1.*data
|
||||||
pitch[:320] = 0
|
pitch[:320] = 0
|
||||||
for i in range(2, nb_frames*feature_chunk_size):
|
for i in range(2, nb_frames*feature_chunk_size):
|
||||||
|
@ -60,7 +69,10 @@ out_data = np.reshape(data, (nb_frames, pcm_chunk_size, 1))
|
||||||
out_data = (out_data.astype('int16')+128).astype('uint8')
|
out_data = (out_data.astype('int16')+128).astype('uint8')
|
||||||
features = np.reshape(features, (nb_frames, feature_chunk_size, nb_features))
|
features = np.reshape(features, (nb_frames, feature_chunk_size, nb_features))
|
||||||
features = features[:, :, :nb_used_features]
|
features = features[:, :, :nb_used_features]
|
||||||
|
pred = np.reshape(pred, (nb_frames, pcm_chunk_size, 1))
|
||||||
|
pred = (pred.astype('int16')+128).astype('uint8')
|
||||||
|
|
||||||
|
in_data = np.concatenate([in_data, pred], axis=-1)
|
||||||
|
|
||||||
#in_data = np.concatenate([in_data, in_pitch], axis=-1)
|
#in_data = np.concatenate([in_data, in_pitch], axis=-1)
|
||||||
|
|
||||||
|
@ -68,7 +80,7 @@ features = features[:, :, :nb_used_features]
|
||||||
# f.create_dataset('data', data=in_data[:50000, :, :])
|
# f.create_dataset('data', data=in_data[:50000, :, :])
|
||||||
# f.create_dataset('feat', data=features[:50000, :, :])
|
# f.create_dataset('feat', data=features[:50000, :, :])
|
||||||
|
|
||||||
checkpoint = ModelCheckpoint('wavenet3g_{epoch:02d}.h5')
|
checkpoint = ModelCheckpoint('wavenet3h9_{epoch:02d}.h5')
|
||||||
|
|
||||||
#model.load_weights('wavernn1c_01.h5')
|
#model.load_weights('wavernn1c_01.h5')
|
||||||
model.compile(optimizer=Adam(0.001, amsgrad=True, decay=2e-4), loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'])
|
model.compile(optimizer=Adam(0.001, amsgrad=True, decay=2e-4), loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'])
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue