mirror of
https://github.com/xiph/opus.git
synced 2025-05-19 01:48:30 +00:00
stashing stuff here
This commit is contained in:
parent
679dfbab58
commit
374ba430c4
4 changed files with 21 additions and 19 deletions
|
@ -12,7 +12,7 @@ import sys
|
|||
rnn_units=512
|
||||
pcm_bits = 8
|
||||
pcm_levels = 2**pcm_bits
|
||||
nb_used_features = 37
|
||||
nb_used_features = 38
|
||||
|
||||
|
||||
def new_wavernn_model():
|
||||
|
@ -22,11 +22,11 @@ def new_wavernn_model():
|
|||
dec_feat = Input(shape=(None, 32))
|
||||
dec_state = Input(shape=(rnn_units,))
|
||||
|
||||
conv1 = Conv1D(16, 7, padding='causal')
|
||||
pconv1 = Conv1D(16, 5, padding='same')
|
||||
pconv2 = Conv1D(16, 5, padding='same')
|
||||
fconv1 = Conv1D(128, 3, padding='same')
|
||||
fconv2 = Conv1D(32, 3, padding='same')
|
||||
conv1 = Conv1D(16, 7, padding='causal', activation='tanh')
|
||||
pconv1 = Conv1D(16, 5, padding='same', activation='tanh')
|
||||
pconv2 = Conv1D(16, 5, padding='same', activation='tanh')
|
||||
fconv1 = Conv1D(128, 3, padding='same', activation='tanh')
|
||||
fconv2 = Conv1D(32, 3, padding='same', activation='tanh')
|
||||
|
||||
if False:
|
||||
cpcm = conv1(pcm)
|
||||
|
@ -40,17 +40,17 @@ def new_wavernn_model():
|
|||
rep = Lambda(lambda x: K.repeat_elements(x, 160, 1))
|
||||
|
||||
rnn = CuDNNGRU(rnn_units, return_sequences=True, return_state=True)
|
||||
rnn_in = Concatenate()([cpcm, cpitch, rep(cfeat)])
|
||||
rnn_in = Concatenate()([cpcm, rep(cfeat)])
|
||||
md = MDense(pcm_levels, activation='softmax')
|
||||
gru_out, state = rnn(rnn_in)
|
||||
ulaw_prob = md(gru_out)
|
||||
|
||||
model = Model([pcm, pitch, feat], ulaw_prob)
|
||||
model = Model([pcm, feat], ulaw_prob)
|
||||
encoder = Model(feat, cfeat)
|
||||
|
||||
dec_rnn_in = Concatenate()([cpcm, cpitch, dec_feat])
|
||||
dec_rnn_in = Concatenate()([cpcm, dec_feat])
|
||||
dec_gru_out, state = rnn(dec_rnn_in, initial_state=dec_state)
|
||||
dec_ulaw_prob = md(dec_gru_out)
|
||||
|
||||
decoder = Model([pcm, pitch, dec_feat, dec_state], [dec_ulaw_prob, state])
|
||||
decoder = Model([pcm, dec_feat, dec_state], [dec_ulaw_prob, state])
|
||||
return model, encoder, decoder
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue