mirror of
https://github.com/xiph/opus.git
synced 2025-05-16 00:18:29 +00:00
added LPCNet torch implementation
Signed-off-by: Jan Buethe <jbuethe@amazon.de>
This commit is contained in:
parent
90a171c1c2
commit
35ee397e06
38 changed files with 3200 additions and 0 deletions
60
dnn/torch/lpcnet/test_lpcnet.py
Normal file
60
dnn/torch/lpcnet/test_lpcnet.py
Normal file
|
@ -0,0 +1,60 @@
|
|||
import argparse
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
|
||||
from models import model_dict
|
||||
from utils.data import load_features
|
||||
from utils.wav import wavwrite16
|
||||
|
||||
debug = False
|
||||
if debug:
|
||||
args = type('dummy', (object,),
|
||||
{
|
||||
'features' : 'features.f32',
|
||||
'checkpoint' : 'checkpoint.pth',
|
||||
'output' : 'out.wav',
|
||||
'version' : 2
|
||||
})()
|
||||
else:
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument('features', type=str, help='feature file')
|
||||
parser.add_argument('checkpoint', type=str, help='checkpoint file')
|
||||
parser.add_argument('output', type=str, help='output file')
|
||||
parser.add_argument('--version', type=int, help='feature version', default=2)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
|
||||
torch.set_num_threads(2)
|
||||
|
||||
version = args.version
|
||||
feature_file = args.features
|
||||
checkpoint_file = args.checkpoint
|
||||
|
||||
|
||||
|
||||
output_file = args.output
|
||||
if not output_file.endswith('.wav'):
|
||||
output_file += '.wav'
|
||||
|
||||
checkpoint = torch.load(checkpoint_file, map_location="cpu")
|
||||
|
||||
# check model
|
||||
if not 'model' in checkpoint['setup']['lpcnet']:
|
||||
print(f'warning: did not find model entry in setup, using default lpcnet')
|
||||
model_name = 'lpcnet'
|
||||
else:
|
||||
model_name = checkpoint['setup']['lpcnet']['model']
|
||||
|
||||
model = model_dict[model_name](checkpoint['setup']['lpcnet']['config'])
|
||||
|
||||
model.load_state_dict(checkpoint['state_dict'])
|
||||
|
||||
data = load_features(feature_file)
|
||||
|
||||
output = model.generate(data['features'], data['periods'], data['lpcs'])
|
||||
|
||||
wavwrite16(output_file, output.numpy(), 16000)
|
Loading…
Add table
Add a link
Reference in a new issue