mirror of
https://github.com/xiph/opus.git
synced 2025-05-20 10:28:32 +00:00
First version of pitch DNN C code
Totally untested -- most likely doesn't work
This commit is contained in:
parent
966a2d22eb
commit
33adba02c7
5 changed files with 97 additions and 3 deletions
|
@ -415,7 +415,7 @@ void conv2d_float(float *out, const float *weights, int in_channels, int out_cha
|
|||
|
||||
#define MAX_CONV2D_INPUTS 2048
|
||||
|
||||
void compute_conv2d(const Conv2DLayer *conv, float *out, float *mem, const float *in, int len2, int activation)
|
||||
void compute_conv2d(const Conv2dLayer *conv, float *out, float *mem, const float *in, int len2, int activation)
|
||||
{
|
||||
int i;
|
||||
const float *bias;
|
||||
|
|
|
@ -83,7 +83,7 @@ typedef struct {
|
|||
int out_channels;
|
||||
int ktime;
|
||||
int kheight;
|
||||
} Conv2DLayer;
|
||||
} Conv2dLayer;
|
||||
|
||||
typedef struct {
|
||||
const float *bias;
|
||||
|
@ -175,6 +175,7 @@ extern const WeightArray lpcnet_plc_arrays[];
|
|||
extern const WeightArray rdovaeenc_arrays[];
|
||||
extern const WeightArray rdovaedec_arrays[];
|
||||
extern const WeightArray fwgan_arrays[];
|
||||
extern const WeightArray pitchdnn_arrays[];
|
||||
|
||||
int linear_init(LinearLayer *layer, const WeightArray *arrays,
|
||||
const char *bias,
|
||||
|
@ -232,6 +233,8 @@ int conv1d_init(Conv1DLayer *layer, const WeightArray *arrays,
|
|||
int nb_neurons,
|
||||
int activation);
|
||||
|
||||
void compute_conv2d(const Conv2dLayer *conv, float *out, float *mem, const float *in, int len2, int activation);
|
||||
|
||||
int embedding_init(EmbeddingLayer *layer, const WeightArray *arrays,
|
||||
const char *embedding_weights,
|
||||
int nb_inputs,
|
||||
|
|
61
dnn/pitchdnn.c
Normal file
61
dnn/pitchdnn.c
Normal file
|
@ -0,0 +1,61 @@
|
|||
#ifdef HAVE_CONFIG_H
|
||||
#include "config.h"
|
||||
#endif
|
||||
|
||||
#include <math.h>
|
||||
#include "pitchdnn.h"
|
||||
#include "os_support.h"
|
||||
#include "nnet.h"
|
||||
#include "lpcnet_private.h"
|
||||
|
||||
|
||||
int compute_pitchdnn(
|
||||
PitchDNNState *st,
|
||||
const float *if_features,
|
||||
const float *xcorr_features
|
||||
)
|
||||
{
|
||||
float if1_out[DENSE_IF_UPSAMPLER_1_OUT_SIZE];
|
||||
float downsampler_in[NB_XCORR_FEATURES + DENSE_IF_UPSAMPLER_2_OUT_SIZE];
|
||||
float downsampler_out[DENSE_DOWNSAMPLER_OUT_SIZE];
|
||||
float conv1_tmp1[NB_XCORR_FEATURES + 2] = {0};
|
||||
float conv1_tmp2[NB_XCORR_FEATURES + 2] = {0};
|
||||
float output[DENSE_FINAL_UPSAMPLER_OUT_SIZE];
|
||||
int i;
|
||||
int pos=0;
|
||||
float maxval=-1;
|
||||
PitchDNN *model = &st->model;
|
||||
|
||||
/* IF */
|
||||
compute_generic_dense(&model->dense_if_upsampler_1, if1_out, if_features, ACTIVATION_TANH);
|
||||
compute_generic_dense(&model->dense_if_upsampler_2, &downsampler_in[NB_XCORR_FEATURES], if1_out, ACTIVATION_TANH);
|
||||
|
||||
/* xcorr*/
|
||||
OPUS_COPY(&conv1_tmp1[1], xcorr_features, NB_XCORR_FEATURES);
|
||||
compute_conv2d(&model->conv2d_1, &conv1_tmp2[1], st->xcorr_mem1, conv1_tmp1, NB_XCORR_FEATURES, ACTIVATION_TANH);
|
||||
compute_conv2d(&model->conv2d_1, &conv1_tmp1[1], st->xcorr_mem2, conv1_tmp2, NB_XCORR_FEATURES, ACTIVATION_TANH);
|
||||
compute_conv2d(&model->conv2d_1, downsampler_in, st->xcorr_mem3, conv1_tmp1, NB_XCORR_FEATURES, ACTIVATION_TANH);
|
||||
|
||||
compute_generic_dense(&model->dense_downsampler, downsampler_out, downsampler_in, ACTIVATION_TANH);
|
||||
compute_generic_gru(&model->gru_1_input, &model->gru_1_recurrent, st->gru_state, downsampler_out);
|
||||
compute_generic_dense(&model->dense_final_upsampler, output, st->gru_state, ACTIVATION_LINEAR);
|
||||
|
||||
for (i=0;i<DENSE_FINAL_UPSAMPLER_OUT_SIZE;i++) {
|
||||
if (output[i] > maxval) {
|
||||
pos = i;
|
||||
maxval = output[i];
|
||||
}
|
||||
}
|
||||
return (1.f/60.f)*pos - 1.5;
|
||||
/*return 256.f/pow(2.f, (1.f/60.f)*i);*/
|
||||
}
|
||||
|
||||
|
||||
void pitchdnn_init(PitchDNNState *st)
|
||||
{
|
||||
int ret;
|
||||
OPUS_CLEAR(st, 1);
|
||||
ret = init_pitchdnn(&st->model, pitchdnn_arrays);
|
||||
celt_assert(ret == 0);
|
||||
/* FIXME: perform arch detection. */
|
||||
}
|
30
dnn/pitchdnn.h
Normal file
30
dnn/pitchdnn.h
Normal file
|
@ -0,0 +1,30 @@
|
|||
#ifndef PITCHDNN_H
|
||||
#define PITCHDNN_H
|
||||
|
||||
|
||||
typedef struct PitchDNN PitchDNN;
|
||||
|
||||
#include "pitchdnn_data.h"
|
||||
#include "lpcnet_private.h"
|
||||
|
||||
#define NB_XCORR_FEATURES (PITCH_MAX_PERIOD-PITCH_MIN_PERIOD)
|
||||
|
||||
|
||||
typedef struct {
|
||||
PitchDNN model;
|
||||
float gru_state[GRU_1_STATE_SIZE];
|
||||
float xcorr_mem1[(NB_XCORR_FEATURES + 2)*2];
|
||||
float xcorr_mem2[(NB_XCORR_FEATURES + 2)*2*8];
|
||||
float xcorr_mem3[(NB_XCORR_FEATURES + 2)*2*8];
|
||||
} PitchDNNState;
|
||||
|
||||
|
||||
void pitchdnn_init(PitchDNNState *st);
|
||||
|
||||
int compute_pitchdnn(
|
||||
PitchDNNState *st,
|
||||
const float *if_features,
|
||||
const float *xcorr_features
|
||||
);
|
||||
|
||||
#endif
|
|
@ -52,7 +52,7 @@ def c_export(args, model):
|
|||
|
||||
message = f"Auto generated from checkpoint {os.path.basename(args.checkpoint)}"
|
||||
|
||||
writer = CWriter(os.path.join(args.output_dir, "neural_pitch_data"), message=message, model_struct_name='PitchDNN')
|
||||
writer = CWriter(os.path.join(args.output_dir, "pitchdnn_data"), message=message, model_struct_name='PitchDNN')
|
||||
writer.header.write(
|
||||
f"""
|
||||
#include "opus_types.h"
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue