First version of pitch DNN C code

Totally untested -- most likely doesn't work
This commit is contained in:
Jean-Marc Valin 2023-10-01 03:59:17 -04:00
parent 966a2d22eb
commit 33adba02c7
No known key found for this signature in database
GPG key ID: 531A52533318F00A
5 changed files with 97 additions and 3 deletions

View file

@ -415,7 +415,7 @@ void conv2d_float(float *out, const float *weights, int in_channels, int out_cha
#define MAX_CONV2D_INPUTS 2048
void compute_conv2d(const Conv2DLayer *conv, float *out, float *mem, const float *in, int len2, int activation)
void compute_conv2d(const Conv2dLayer *conv, float *out, float *mem, const float *in, int len2, int activation)
{
int i;
const float *bias;

View file

@ -83,7 +83,7 @@ typedef struct {
int out_channels;
int ktime;
int kheight;
} Conv2DLayer;
} Conv2dLayer;
typedef struct {
const float *bias;
@ -175,6 +175,7 @@ extern const WeightArray lpcnet_plc_arrays[];
extern const WeightArray rdovaeenc_arrays[];
extern const WeightArray rdovaedec_arrays[];
extern const WeightArray fwgan_arrays[];
extern const WeightArray pitchdnn_arrays[];
int linear_init(LinearLayer *layer, const WeightArray *arrays,
const char *bias,
@ -232,6 +233,8 @@ int conv1d_init(Conv1DLayer *layer, const WeightArray *arrays,
int nb_neurons,
int activation);
void compute_conv2d(const Conv2dLayer *conv, float *out, float *mem, const float *in, int len2, int activation);
int embedding_init(EmbeddingLayer *layer, const WeightArray *arrays,
const char *embedding_weights,
int nb_inputs,

61
dnn/pitchdnn.c Normal file
View file

@ -0,0 +1,61 @@
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <math.h>
#include "pitchdnn.h"
#include "os_support.h"
#include "nnet.h"
#include "lpcnet_private.h"
int compute_pitchdnn(
PitchDNNState *st,
const float *if_features,
const float *xcorr_features
)
{
float if1_out[DENSE_IF_UPSAMPLER_1_OUT_SIZE];
float downsampler_in[NB_XCORR_FEATURES + DENSE_IF_UPSAMPLER_2_OUT_SIZE];
float downsampler_out[DENSE_DOWNSAMPLER_OUT_SIZE];
float conv1_tmp1[NB_XCORR_FEATURES + 2] = {0};
float conv1_tmp2[NB_XCORR_FEATURES + 2] = {0};
float output[DENSE_FINAL_UPSAMPLER_OUT_SIZE];
int i;
int pos=0;
float maxval=-1;
PitchDNN *model = &st->model;
/* IF */
compute_generic_dense(&model->dense_if_upsampler_1, if1_out, if_features, ACTIVATION_TANH);
compute_generic_dense(&model->dense_if_upsampler_2, &downsampler_in[NB_XCORR_FEATURES], if1_out, ACTIVATION_TANH);
/* xcorr*/
OPUS_COPY(&conv1_tmp1[1], xcorr_features, NB_XCORR_FEATURES);
compute_conv2d(&model->conv2d_1, &conv1_tmp2[1], st->xcorr_mem1, conv1_tmp1, NB_XCORR_FEATURES, ACTIVATION_TANH);
compute_conv2d(&model->conv2d_1, &conv1_tmp1[1], st->xcorr_mem2, conv1_tmp2, NB_XCORR_FEATURES, ACTIVATION_TANH);
compute_conv2d(&model->conv2d_1, downsampler_in, st->xcorr_mem3, conv1_tmp1, NB_XCORR_FEATURES, ACTIVATION_TANH);
compute_generic_dense(&model->dense_downsampler, downsampler_out, downsampler_in, ACTIVATION_TANH);
compute_generic_gru(&model->gru_1_input, &model->gru_1_recurrent, st->gru_state, downsampler_out);
compute_generic_dense(&model->dense_final_upsampler, output, st->gru_state, ACTIVATION_LINEAR);
for (i=0;i<DENSE_FINAL_UPSAMPLER_OUT_SIZE;i++) {
if (output[i] > maxval) {
pos = i;
maxval = output[i];
}
}
return (1.f/60.f)*pos - 1.5;
/*return 256.f/pow(2.f, (1.f/60.f)*i);*/
}
void pitchdnn_init(PitchDNNState *st)
{
int ret;
OPUS_CLEAR(st, 1);
ret = init_pitchdnn(&st->model, pitchdnn_arrays);
celt_assert(ret == 0);
/* FIXME: perform arch detection. */
}

30
dnn/pitchdnn.h Normal file
View file

@ -0,0 +1,30 @@
#ifndef PITCHDNN_H
#define PITCHDNN_H
typedef struct PitchDNN PitchDNN;
#include "pitchdnn_data.h"
#include "lpcnet_private.h"
#define NB_XCORR_FEATURES (PITCH_MAX_PERIOD-PITCH_MIN_PERIOD)
typedef struct {
PitchDNN model;
float gru_state[GRU_1_STATE_SIZE];
float xcorr_mem1[(NB_XCORR_FEATURES + 2)*2];
float xcorr_mem2[(NB_XCORR_FEATURES + 2)*2*8];
float xcorr_mem3[(NB_XCORR_FEATURES + 2)*2*8];
} PitchDNNState;
void pitchdnn_init(PitchDNNState *st);
int compute_pitchdnn(
PitchDNNState *st,
const float *if_features,
const float *xcorr_features
);
#endif

View file

@ -52,7 +52,7 @@ def c_export(args, model):
message = f"Auto generated from checkpoint {os.path.basename(args.checkpoint)}"
writer = CWriter(os.path.join(args.output_dir, "neural_pitch_data"), message=message, model_struct_name='PitchDNN')
writer = CWriter(os.path.join(args.output_dir, "pitchdnn_data"), message=message, model_struct_name='PitchDNN')
writer.header.write(
f"""
#include "opus_types.h"