WIP: PLC prediction
This commit is contained in:
parent
c45963d40a
commit
32a63fd31d
4 changed files with 290 additions and 1 deletions
265
dnn/training_tf2/dump_plc.py
Executable file
265
dnn/training_tf2/dump_plc.py
Executable file
|
@ -0,0 +1,265 @@
|
|||
#!/usr/bin/python3
|
||||
'''Copyright (c) 2021-2022 Amazon
|
||||
Copyright (c) 2017-2018 Mozilla
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions
|
||||
are met:
|
||||
|
||||
- Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
- Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in the
|
||||
documentation and/or other materials provided with the distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
|
||||
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
'''
|
||||
|
||||
import lpcnet_plc
|
||||
import sys
|
||||
import numpy as np
|
||||
from tensorflow.keras.optimizers import Adam
|
||||
from tensorflow.keras.layers import Layer, GRU, Dense, Conv1D, Embedding
|
||||
import h5py
|
||||
import re
|
||||
|
||||
# Flag for dumping e2e (differentiable lpc) network weights
|
||||
flag_e2e = False
|
||||
|
||||
max_rnn_neurons = 1
|
||||
max_conv_inputs = 1
|
||||
|
||||
def printVector(f, vector, name, dtype='float', dotp=False):
|
||||
if dotp:
|
||||
vector = vector.reshape((vector.shape[0]//4, 4, vector.shape[1]//8, 8))
|
||||
vector = vector.transpose((2, 0, 3, 1))
|
||||
v = np.reshape(vector, (-1));
|
||||
#print('static const float ', name, '[', len(v), '] = \n', file=f)
|
||||
f.write('static const {} {}[{}] = {{\n '.format(dtype, name, len(v)))
|
||||
for i in range(0, len(v)):
|
||||
f.write('{}'.format(v[i]))
|
||||
if (i!=len(v)-1):
|
||||
f.write(',')
|
||||
else:
|
||||
break;
|
||||
if (i%8==7):
|
||||
f.write("\n ")
|
||||
else:
|
||||
f.write(" ")
|
||||
#print(v, file=f)
|
||||
f.write('\n};\n\n')
|
||||
return;
|
||||
|
||||
def printSparseVector(f, A, name, have_diag=True):
|
||||
N = A.shape[0]
|
||||
M = A.shape[1]
|
||||
W = np.zeros((0,), dtype='int')
|
||||
W0 = np.zeros((0,))
|
||||
if have_diag:
|
||||
diag = np.concatenate([np.diag(A[:,:N]), np.diag(A[:,N:2*N]), np.diag(A[:,2*N:])])
|
||||
A[:,:N] = A[:,:N] - np.diag(np.diag(A[:,:N]))
|
||||
A[:,N:2*N] = A[:,N:2*N] - np.diag(np.diag(A[:,N:2*N]))
|
||||
A[:,2*N:] = A[:,2*N:] - np.diag(np.diag(A[:,2*N:]))
|
||||
printVector(f, diag, name + '_diag')
|
||||
AQ = np.minimum(127, np.maximum(-128, np.round(A*128))).astype('int')
|
||||
idx = np.zeros((0,), dtype='int')
|
||||
for i in range(M//8):
|
||||
pos = idx.shape[0]
|
||||
idx = np.append(idx, -1)
|
||||
nb_nonzero = 0
|
||||
for j in range(N//4):
|
||||
block = A[j*4:(j+1)*4, i*8:(i+1)*8]
|
||||
qblock = AQ[j*4:(j+1)*4, i*8:(i+1)*8]
|
||||
if np.sum(np.abs(block)) > 1e-10:
|
||||
nb_nonzero = nb_nonzero + 1
|
||||
idx = np.append(idx, j*4)
|
||||
vblock = qblock.transpose((1,0)).reshape((-1,))
|
||||
W0 = np.concatenate([W0, block.reshape((-1,))])
|
||||
W = np.concatenate([W, vblock])
|
||||
idx[pos] = nb_nonzero
|
||||
f.write('#ifdef DOT_PROD\n')
|
||||
printVector(f, W, name, dtype='qweight')
|
||||
f.write('#else /*DOT_PROD*/\n')
|
||||
printVector(f, W0, name, dtype='qweight')
|
||||
f.write('#endif /*DOT_PROD*/\n')
|
||||
#idx = np.tile(np.concatenate([np.array([N]), np.arange(N)]), 3*N//16)
|
||||
printVector(f, idx, name + '_idx', dtype='int')
|
||||
return AQ
|
||||
|
||||
def dump_layer_ignore(self, f, hf):
|
||||
print("ignoring layer " + self.name + " of type " + self.__class__.__name__)
|
||||
return False
|
||||
Layer.dump_layer = dump_layer_ignore
|
||||
|
||||
def dump_sparse_gru(self, f, hf):
|
||||
global max_rnn_neurons
|
||||
name = 'sparse_' + self.name
|
||||
print("printing layer " + name + " of type sparse " + self.__class__.__name__)
|
||||
weights = self.get_weights()
|
||||
qweights = printSparseVector(f, weights[1], name + '_recurrent_weights')
|
||||
printVector(f, weights[-1], name + '_bias')
|
||||
subias = weights[-1].copy()
|
||||
subias[1,:] = subias[1,:] - np.sum(qweights*(1./128),axis=0)
|
||||
printVector(f, subias, name + '_subias')
|
||||
if hasattr(self, 'activation'):
|
||||
activation = self.activation.__name__.upper()
|
||||
else:
|
||||
activation = 'TANH'
|
||||
if hasattr(self, 'reset_after') and not self.reset_after:
|
||||
reset_after = 0
|
||||
else:
|
||||
reset_after = 1
|
||||
neurons = weights[0].shape[1]//3
|
||||
max_rnn_neurons = max(max_rnn_neurons, neurons)
|
||||
f.write('const SparseGRULayer {} = {{\n {}_bias,\n {}_subias,\n {}_recurrent_weights_diag,\n {}_recurrent_weights,\n {}_recurrent_weights_idx,\n {}, ACTIVATION_{}, {}\n}};\n\n'
|
||||
.format(name, name, name, name, name, name, weights[0].shape[1]//3, activation, reset_after))
|
||||
hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3))
|
||||
hf.write('#define {}_STATE_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3))
|
||||
hf.write('extern const SparseGRULayer {};\n\n'.format(name));
|
||||
return True
|
||||
|
||||
def dump_gru_layer(self, f, hf):
|
||||
global max_rnn_neurons
|
||||
name = self.name
|
||||
print("printing layer " + name + " of type " + self.__class__.__name__)
|
||||
weights = self.get_weights()
|
||||
qweight = printSparseVector(f, weights[0], name + '_weights', have_diag=False)
|
||||
|
||||
f.write('#ifdef DOT_PROD\n')
|
||||
qweight2 = np.clip(np.round(128.*weights[1]).astype('int'), -128, 127)
|
||||
printVector(f, qweight2, name + '_recurrent_weights', dotp=True, dtype='qweight')
|
||||
f.write('#else /*DOT_PROD*/\n')
|
||||
printVector(f, weights[1], name + '_recurrent_weights')
|
||||
f.write('#endif /*DOT_PROD*/\n')
|
||||
|
||||
printVector(f, weights[-1], name + '_bias')
|
||||
subias = weights[-1].copy()
|
||||
subias[0,:] = subias[0,:] - np.sum(qweight*(1./128.),axis=0)
|
||||
subias[1,:] = subias[1,:] - np.sum(qweight2*(1./128.),axis=0)
|
||||
printVector(f, subias, name + '_subias')
|
||||
if hasattr(self, 'activation'):
|
||||
activation = self.activation.__name__.upper()
|
||||
else:
|
||||
activation = 'TANH'
|
||||
if hasattr(self, 'reset_after') and not self.reset_after:
|
||||
reset_after = 0
|
||||
else:
|
||||
reset_after = 1
|
||||
neurons = weights[0].shape[1]//3
|
||||
max_rnn_neurons = max(max_rnn_neurons, neurons)
|
||||
f.write('const GRULayer {} = {{\n {}_bias,\n {}_subias,\n {}_weights,\n {}_weights_idx,\n {}_recurrent_weights,\n {}, {}, ACTIVATION_{}, {}\n}};\n\n'
|
||||
.format(name, name, name, name, name, name, weights[0].shape[0], weights[0].shape[1]//3, activation, reset_after))
|
||||
hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3))
|
||||
hf.write('#define {}_STATE_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3))
|
||||
hf.write('extern const GRULayer {};\n\n'.format(name));
|
||||
return True
|
||||
GRU.dump_layer = dump_gru_layer
|
||||
|
||||
def dump_gru_layer_dummy(self, f, hf):
|
||||
name = self.name
|
||||
weights = self.get_weights()
|
||||
hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3))
|
||||
hf.write('#define {}_STATE_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3))
|
||||
return True;
|
||||
|
||||
#GRU.dump_layer = dump_gru_layer_dummy
|
||||
|
||||
def dump_dense_layer_impl(name, weights, bias, activation, f, hf):
|
||||
printVector(f, weights, name + '_weights')
|
||||
printVector(f, bias, name + '_bias')
|
||||
f.write('const DenseLayer {} = {{\n {}_bias,\n {}_weights,\n {}, {}, ACTIVATION_{}\n}};\n\n'
|
||||
.format(name, name, name, weights.shape[0], weights.shape[1], activation))
|
||||
hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights.shape[1]))
|
||||
hf.write('extern const DenseLayer {};\n\n'.format(name));
|
||||
|
||||
def dump_dense_layer(self, f, hf):
|
||||
name = self.name
|
||||
print("printing layer " + name + " of type " + self.__class__.__name__)
|
||||
weights = self.get_weights()
|
||||
activation = self.activation.__name__.upper()
|
||||
dump_dense_layer_impl(name, weights[0], weights[1], activation, f, hf)
|
||||
return False
|
||||
|
||||
Dense.dump_layer = dump_dense_layer
|
||||
|
||||
def dump_conv1d_layer(self, f, hf):
|
||||
global max_conv_inputs
|
||||
name = self.name
|
||||
print("printing layer " + name + " of type " + self.__class__.__name__)
|
||||
weights = self.get_weights()
|
||||
printVector(f, weights[0], name + '_weights')
|
||||
printVector(f, weights[-1], name + '_bias')
|
||||
activation = self.activation.__name__.upper()
|
||||
max_conv_inputs = max(max_conv_inputs, weights[0].shape[1]*weights[0].shape[0])
|
||||
f.write('const Conv1DLayer {} = {{\n {}_bias,\n {}_weights,\n {}, {}, {}, ACTIVATION_{}\n}};\n\n'
|
||||
.format(name, name, name, weights[0].shape[1], weights[0].shape[0], weights[0].shape[2], activation))
|
||||
hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights[0].shape[2]))
|
||||
hf.write('#define {}_STATE_SIZE ({}*{})\n'.format(name.upper(), weights[0].shape[1], (weights[0].shape[0]-1)))
|
||||
hf.write('#define {}_DELAY {}\n'.format(name.upper(), (weights[0].shape[0]-1)//2))
|
||||
hf.write('extern const Conv1DLayer {};\n\n'.format(name));
|
||||
return True
|
||||
Conv1D.dump_layer = dump_conv1d_layer
|
||||
|
||||
|
||||
|
||||
filename = sys.argv[1]
|
||||
with h5py.File(filename, "r") as f:
|
||||
units = min(f['model_weights']['plc_gru1']['plc_gru1']['recurrent_kernel:0'].shape)
|
||||
units2 = min(f['model_weights']['plc_gru2']['plc_gru2']['recurrent_kernel:0'].shape)
|
||||
cond_size = f['model_weights']['plc_dense1']['plc_dense1']['kernel:0'].shape[1]
|
||||
|
||||
model = lpcnet_plc.new_lpcnet_plc_model(rnn_units=units, cond_size=cond_size)
|
||||
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'])
|
||||
#model.summary()
|
||||
|
||||
model.load_weights(filename, by_name=True)
|
||||
|
||||
if len(sys.argv) > 2:
|
||||
cfile = sys.argv[2];
|
||||
hfile = sys.argv[3];
|
||||
else:
|
||||
cfile = 'plc_data.c'
|
||||
hfile = 'plc_data.h'
|
||||
|
||||
|
||||
f = open(cfile, 'w')
|
||||
hf = open(hfile, 'w')
|
||||
|
||||
|
||||
f.write('/*This file is automatically generated from a Keras model*/\n')
|
||||
f.write('/*based on model {}*/\n\n'.format(sys.argv[1]))
|
||||
f.write('#ifdef HAVE_CONFIG_H\n#include "config.h"\n#endif\n\n#include "nnet.h"\n#include "{}"\n\n'.format(hfile))
|
||||
|
||||
hf.write('/*This file is automatically generated from a Keras model*/\n\n')
|
||||
hf.write('#ifndef PLC_DATA_H\n#define PLC_DATA_H\n\n#include "nnet.h"\n\n')
|
||||
|
||||
layer_list = []
|
||||
for i, layer in enumerate(model.layers):
|
||||
if layer.dump_layer(f, hf):
|
||||
layer_list.append(layer.name)
|
||||
|
||||
#dump_sparse_gru(model.get_layer('gru_a'), f, hf)
|
||||
|
||||
hf.write('#define PLC_MAX_RNN_NEURONS {}\n\n'.format(max_rnn_neurons))
|
||||
#hf.write('#define PLC_MAX_CONV_INPUTS {}\n\n'.format(max_conv_inputs))
|
||||
|
||||
hf.write('typedef struct {\n')
|
||||
for i, name in enumerate(layer_list):
|
||||
hf.write(' float {}_state[{}_STATE_SIZE];\n'.format(name, name.upper()))
|
||||
hf.write('} PLCNetState;\n')
|
||||
|
||||
hf.write('\n\n#endif\n')
|
||||
|
||||
f.close()
|
||||
hf.close()
|
Loading…
Add table
Add a link
Reference in a new issue