Using Burg cepstrum for feature prediction

This commit is contained in:
Jean-Marc Valin 2022-02-04 22:04:23 -05:00
parent b93dbfc0bc
commit 2e18f0d160
8 changed files with 50 additions and 15 deletions

View file

@ -138,9 +138,18 @@ int main(int argc, char **argv) {
int encode = 0;
int decode = 0;
int quantize = 0;
int burg = 0;
srand(getpid());
st = lpcnet_encoder_create();
argv0=argv[0];
if (argc == 5 && strcmp(argv[1], "-btrain")==0) {
burg = 1;
training = 1;
}
if (argc == 4 && strcmp(argv[1], "-btest")==0) {
burg = 1;
training = 0;
}
if (argc == 5 && strcmp(argv[1], "-train")==0) training = 1;
if (argc == 5 && strcmp(argv[1], "-qtrain")==0) {
training = 1;
@ -236,7 +245,8 @@ int main(int argc, char **argv) {
if (count*FRAME_SIZE_5MS>=10000000 && one_pass_completed) break;
if (training && ++gain_change_count > 2821) {
float tmp, tmp2;
speech_gain = pow(10., (-20+(rand()%40))/20.);
speech_gain = pow(10., (-30+(rand()%40))/20.);
if (rand()&1) speech_gain = -speech_gain;
if (rand()%20==0) speech_gain *= .01;
if (rand()%100==0) speech_gain = 0;
gain_change_count = 0;
@ -247,13 +257,18 @@ int main(int argc, char **argv) {
}
biquad(x, mem_hp_x, x, b_hp, a_hp, FRAME_SIZE);
biquad(x, mem_resp_x, x, b_sig, a_sig, FRAME_SIZE);
preemphasis(x, &mem_preemph, x, PREEMPHASIS, FRAME_SIZE);
for (i=0;i<FRAME_SIZE;i++) {
float g;
float f = (float)i/FRAME_SIZE;
g = f*speech_gain + (1-f)*old_speech_gain;
x[i] *= g;
}
if (burg) {
float ceps[2*NB_BANDS];
burg_cepstral_analysis(ceps, x);
fwrite(ceps, sizeof(float), 2*NB_BANDS, ffeat);
}
preemphasis(x, &mem_preemph, x, PREEMPHASIS, FRAME_SIZE);
for (i=0;i<FRAME_SIZE;i++) x[i] += rand()/(float)RAND_MAX - .5;
/* PCM is delayed by 1/2 frame to make the features centered on the frames. */
for (i=0;i<FRAME_SIZE-TRAINING_OFFSET;i++) pcm[i+TRAINING_OFFSET] = float2short(x[i]);

View file

@ -155,7 +155,7 @@ void compute_band_energy(float *bandE, const kiss_fft_cpx *X) {
}
}
void compute_burg_cepstrum(const short *pcm, float *burg_cepstrum, int len, int order) {
void compute_burg_cepstrum(const float *pcm, float *burg_cepstrum, int len, int order) {
int i;
float burg_in[FRAME_SIZE];
float burg_lpc[LPC_ORDER];
@ -190,6 +190,19 @@ void compute_burg_cepstrum(const short *pcm, float *burg_cepstrum, int len, int
burg_cepstrum[0] += - 4;
}
void burg_cepstral_analysis(float *ceps, const float *x) {
int i;
compute_burg_cepstrum(x, &ceps[0 ], FRAME_SIZE/2, LPC_ORDER);
compute_burg_cepstrum(&x[FRAME_SIZE/2], &ceps[NB_BANDS], FRAME_SIZE/2, LPC_ORDER);
for (i=0;i<NB_BANDS;i++) {
float c0, c1;
c0 = ceps[i];
c1 = ceps[NB_BANDS+i];
ceps[i ] = .5*(c0+c1);
ceps[NB_BANDS+i] = (c0-c1);
}
}
void compute_band_corr(float *bandE, const kiss_fft_cpx *X, const kiss_fft_cpx *P) {
int i;
float sum[NB_BANDS] = {0};

View file

@ -47,7 +47,8 @@
void compute_band_energy(float *bandE, const kiss_fft_cpx *X);
void compute_band_corr(float *bandE, const kiss_fft_cpx *X, const kiss_fft_cpx *P);
void compute_burg_cepstrum(const short *pcm, float *burg_cepstrum, int len, int order);
void compute_burg_cepstrum(const float *pcm, float *burg_cepstrum, int len, int order);
void burg_cepstral_analysis(float *ceps, const float *x);
void apply_window(float *x);
void dct(float *out, const float *in);

View file

@ -75,7 +75,9 @@ LPCNET_EXPORT int lpcnet_plc_update(LPCNetPLCState *st, short *pcm) {
float x[FRAME_SIZE];
short output[FRAME_SIZE];
#if PLC_DNN_PRED
float plc_features[NB_FEATURES+1];
float plc_features[2*NB_BANDS+NB_FEATURES+1];
for (i=0;i<FRAME_SIZE;i++) x[i] = pcm[i];
burg_cepstral_analysis(plc_features, x);
#endif
st->enc.pcount = 0;
if (st->skip_analysis) {
@ -105,8 +107,8 @@ LPCNET_EXPORT int lpcnet_plc_update(LPCNetPLCState *st, short *pcm) {
process_single_frame(&st->enc, NULL);
#if PLC_DNN_PRED
if (st->skip_analysis <= 1) {
RNN_COPY(plc_features, st->enc.features[0], NB_FEATURES);
plc_features[NB_FEATURES] = 1;
RNN_COPY(&plc_features[2*NB_BANDS], st->enc.features[0], NB_FEATURES);
plc_features[2*NB_BANDS+NB_FEATURES] = 1;
compute_plc_pred(&st->plc_net, st->features, plc_features);
}
#else
@ -142,7 +144,7 @@ LPCNET_EXPORT int lpcnet_plc_conceal(LPCNetPLCState *st, short *pcm) {
int i;
#endif
short output[FRAME_SIZE];
float zeros[NB_FEATURES+1] = {0};
float zeros[2*NB_BANDS+NB_FEATURES+1] = {0};
st->enc.pcount = 0;
/* If we concealed the previous frame, finish synthesizing the rest of the samples. */
/* FIXME: Copy/predict features. */

View file

@ -64,6 +64,7 @@ struct LPCNetEncState{
float features[4][NB_TOTAL_FEATURES];
float sig_mem[LPC_ORDER];
int exc_mem;
float burg_cepstrum[2*NB_BANDS];
};
#define PLC_BUF_SIZE (FEATURES_DELAY*FRAME_SIZE + TRAINING_OFFSET)

View file

@ -62,8 +62,8 @@ class WeightClip(Constraint):
constraint = WeightClip(0.992)
def new_lpcnet_plc_model(rnn_units=256, nb_used_features=20, batch_size=128, training=False, adaptation=False, quantize=False, cond_size=128):
feat = Input(shape=(None, nb_used_features), batch_size=batch_size)
def new_lpcnet_plc_model(rnn_units=256, nb_used_features=20, nb_burg_features=36, batch_size=128, training=False, adaptation=False, quantize=False, cond_size=128):
feat = Input(shape=(None, nb_used_features+nb_burg_features), batch_size=batch_size)
lost = Input(shape=(None, 1), batch_size=batch_size)
fdense1 = Dense(cond_size, activation='tanh', name='plc_dense1')
@ -96,5 +96,6 @@ def new_lpcnet_plc_model(rnn_units=256, nb_used_features=20, batch_size=128, tra
model.rnn_units = rnn_units
model.cond_size = cond_size
model.nb_used_features = nb_used_features
model.nb_burg_features = nb_burg_features
return model

View file

@ -29,12 +29,13 @@ import numpy as np
from tensorflow.keras.utils import Sequence
class PLCLoader(Sequence):
def __init__(self, features, lost, batch_size):
def __init__(self, features, lost, nb_burg_features, batch_size):
self.batch_size = batch_size
self.nb_batches = features.shape[0]//self.batch_size
self.features = features[:self.nb_batches*self.batch_size, :, :]
self.lost = lost.astype('float')
self.lost = self.lost[:(len(self.lost)//features.shape[1]-1)*features.shape[1]]
self.nb_burg_features = nb_burg_features
self.on_epoch_end()
def on_epoch_end(self):
@ -51,7 +52,7 @@ class PLCLoader(Sequence):
lost = np.reshape(lost, (features.shape[0], features.shape[1], 1))
lost_mask = np.tile(lost, (1,1,features.shape[2]))
out_features = np.concatenate([features, 1.-lost], axis=-1)
out_features = np.concatenate([features[:,:,self.nb_burg_features:], 1.-lost], axis=-1)
inputs = [features*lost_mask, lost]
outputs = [out_features]
return (inputs, outputs)

View file

@ -140,8 +140,9 @@ with strategy.scope():
lpc_order = 16
feature_file = args.features
nb_features = model.nb_used_features + lpc_order
nb_features = model.nb_used_features + lpc_order + model.nb_burg_features
nb_used_features = model.nb_used_features
nb_burg_features = model.nb_burg_features
sequence_size = args.seq_length
# u for unquantised, load 16 bit PCM samples and convert to mu-law
@ -153,7 +154,7 @@ features = features[:nb_sequences*sequence_size*nb_features]
features = np.reshape(features, (nb_sequences, sequence_size, nb_features))
features = features[:, :, :nb_used_features]
features = features[:, :, :nb_used_features+model.nb_burg_features]
lost = np.memmap(args.lost_file, dtype='int8', mode='r')
@ -169,7 +170,7 @@ if quantize or retrain:
model.save_weights('{}_{}_initial.h5'.format(args.output, args.gru_size))
loader = PLCLoader(features, lost, batch_size)
loader = PLCLoader(features, lost, nb_burg_features, batch_size)
callbacks = [checkpoint]
if args.logdir is not None: