mirror of
https://github.com/xiph/opus.git
synced 2025-05-31 07:37:42 +00:00
Using Burg cepstrum for feature prediction
This commit is contained in:
parent
b93dbfc0bc
commit
2e18f0d160
8 changed files with 50 additions and 15 deletions
|
@ -62,8 +62,8 @@ class WeightClip(Constraint):
|
|||
|
||||
constraint = WeightClip(0.992)
|
||||
|
||||
def new_lpcnet_plc_model(rnn_units=256, nb_used_features=20, batch_size=128, training=False, adaptation=False, quantize=False, cond_size=128):
|
||||
feat = Input(shape=(None, nb_used_features), batch_size=batch_size)
|
||||
def new_lpcnet_plc_model(rnn_units=256, nb_used_features=20, nb_burg_features=36, batch_size=128, training=False, adaptation=False, quantize=False, cond_size=128):
|
||||
feat = Input(shape=(None, nb_used_features+nb_burg_features), batch_size=batch_size)
|
||||
lost = Input(shape=(None, 1), batch_size=batch_size)
|
||||
|
||||
fdense1 = Dense(cond_size, activation='tanh', name='plc_dense1')
|
||||
|
@ -96,5 +96,6 @@ def new_lpcnet_plc_model(rnn_units=256, nb_used_features=20, batch_size=128, tra
|
|||
model.rnn_units = rnn_units
|
||||
model.cond_size = cond_size
|
||||
model.nb_used_features = nb_used_features
|
||||
model.nb_burg_features = nb_burg_features
|
||||
|
||||
return model
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue