mirror of
https://github.com/xiph/opus.git
synced 2025-06-06 15:30:48 +00:00
Add input embedding
This commit is contained in:
parent
1837dad072
commit
2aba2a9c49
2 changed files with 30 additions and 3 deletions
|
@ -31,7 +31,7 @@ feature_chunk_size = 15
|
||||||
pcm_chunk_size = frame_size*feature_chunk_size
|
pcm_chunk_size = frame_size*feature_chunk_size
|
||||||
|
|
||||||
data = np.fromfile(pcmfile, dtype='int16')
|
data = np.fromfile(pcmfile, dtype='int16')
|
||||||
data = np.minimum(127, lin2ulaw(data[160:]/32768.))
|
data = np.minimum(127, lin2ulaw(data[80:]/32768.))
|
||||||
nb_frames = len(data)//pcm_chunk_size
|
nb_frames = len(data)//pcm_chunk_size
|
||||||
|
|
||||||
features = np.fromfile(feature_file, dtype='float32')
|
features = np.fromfile(feature_file, dtype='float32')
|
||||||
|
@ -39,7 +39,7 @@ features = np.fromfile(feature_file, dtype='float32')
|
||||||
data = data[:nb_frames*pcm_chunk_size]
|
data = data[:nb_frames*pcm_chunk_size]
|
||||||
features = features[:nb_frames*feature_chunk_size*nb_features]
|
features = features[:nb_frames*feature_chunk_size*nb_features]
|
||||||
|
|
||||||
in_data = np.concatenate([data[0:1], data[:-1]])/16.;
|
in_data = np.concatenate([data[0:1], data[:-1]]);
|
||||||
|
|
||||||
features = np.reshape(features, (nb_frames*feature_chunk_size, nb_features))
|
features = np.reshape(features, (nb_frames*feature_chunk_size, nb_features))
|
||||||
pitch = 1.*data
|
pitch = 1.*data
|
||||||
|
@ -51,6 +51,7 @@ for i in range(2, nb_frames*feature_chunk_size):
|
||||||
in_pitch = np.reshape(pitch/16., (nb_frames, pcm_chunk_size, 1))
|
in_pitch = np.reshape(pitch/16., (nb_frames, pcm_chunk_size, 1))
|
||||||
|
|
||||||
in_data = np.reshape(in_data, (nb_frames, pcm_chunk_size, 1))
|
in_data = np.reshape(in_data, (nb_frames, pcm_chunk_size, 1))
|
||||||
|
in_data = (in_data.astype('int16')+128).astype('uint8')
|
||||||
out_data = np.reshape(data, (nb_frames, pcm_chunk_size, 1))
|
out_data = np.reshape(data, (nb_frames, pcm_chunk_size, 1))
|
||||||
out_data = (out_data.astype('int16')+128).astype('uint8')
|
out_data = (out_data.astype('int16')+128).astype('uint8')
|
||||||
features = np.reshape(features, (nb_frames, feature_chunk_size, nb_features))
|
features = np.reshape(features, (nb_frames, feature_chunk_size, nb_features))
|
||||||
|
|
|
@ -4,6 +4,7 @@ import math
|
||||||
from keras.models import Model
|
from keras.models import Model
|
||||||
from keras.layers import Input, LSTM, CuDNNGRU, Dense, Embedding, Reshape, Concatenate, Lambda, Conv1D, Add, Multiply, Bidirectional, MaxPooling1D, Activation
|
from keras.layers import Input, LSTM, CuDNNGRU, Dense, Embedding, Reshape, Concatenate, Lambda, Conv1D, Add, Multiply, Bidirectional, MaxPooling1D, Activation
|
||||||
from keras import backend as K
|
from keras import backend as K
|
||||||
|
from keras.initializers import Initializer
|
||||||
from keras.initializers import VarianceScaling
|
from keras.initializers import VarianceScaling
|
||||||
from mdense import MDense
|
from mdense import MDense
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
@ -17,6 +18,30 @@ pcm_bits = 8
|
||||||
pcm_levels = 2**pcm_bits
|
pcm_levels = 2**pcm_bits
|
||||||
nb_used_features = 38
|
nb_used_features = 38
|
||||||
|
|
||||||
|
class PCMInit(Initializer):
|
||||||
|
def __init__(self, gain=.1, seed=None):
|
||||||
|
self.gain = gain
|
||||||
|
self.seed = seed
|
||||||
|
|
||||||
|
def __call__(self, shape, dtype=None):
|
||||||
|
num_rows = 1
|
||||||
|
for dim in shape[:-1]:
|
||||||
|
num_rows *= dim
|
||||||
|
num_cols = shape[-1]
|
||||||
|
flat_shape = (num_rows, num_cols)
|
||||||
|
if self.seed is not None:
|
||||||
|
np.random.seed(self.seed)
|
||||||
|
a = np.random.uniform(-1.7321, 1.7321, flat_shape)
|
||||||
|
#a[:,0] = math.sqrt(12)*np.arange(-.5*num_rows+.5,.5*num_rows-.4)/num_rows
|
||||||
|
#a[:,1] = .5*a[:,0]*a[:,0]*a[:,0]
|
||||||
|
a = a + np.reshape(math.sqrt(12)*np.arange(-.5*num_rows+.5,.5*num_rows-.4)/num_rows, (num_rows, 1))
|
||||||
|
return self.gain * a
|
||||||
|
|
||||||
|
def get_config(self):
|
||||||
|
return {
|
||||||
|
'gain': self.gain,
|
||||||
|
'seed': self.seed
|
||||||
|
}
|
||||||
|
|
||||||
def new_wavenet_model(fftnet=False):
|
def new_wavenet_model(fftnet=False):
|
||||||
pcm = Input(shape=(None, 1))
|
pcm = Input(shape=(None, 1))
|
||||||
|
@ -34,7 +59,8 @@ def new_wavenet_model(fftnet=False):
|
||||||
activation='tanh'
|
activation='tanh'
|
||||||
rfeat = rep(cfeat)
|
rfeat = rep(cfeat)
|
||||||
#tmp = Concatenate()([pcm, rfeat])
|
#tmp = Concatenate()([pcm, rfeat])
|
||||||
tmp = pcm
|
embed = Embedding(256, units, embeddings_initializer=PCMInit())
|
||||||
|
tmp = Reshape((-1, units))(embed(pcm))
|
||||||
init = VarianceScaling(scale=1.5,mode='fan_avg',distribution='uniform')
|
init = VarianceScaling(scale=1.5,mode='fan_avg',distribution='uniform')
|
||||||
for k in range(10):
|
for k in range(10):
|
||||||
res = tmp
|
res = tmp
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue