added 16kHz version of opus_compare in python

This commit is contained in:
Jan Buethe 2023-10-20 14:24:27 +02:00
parent 1accd2472e
commit 290be25b98
No known key found for this signature in database
GPG key ID: 9E32027A35B36314

View file

@ -0,0 +1,90 @@
import numpy as np
import scipy.signal
def power_spectrum(x, window_size=160, hop_size=40, window='hamming'):
num_spectra = (len(x) - window_size - hop_size) // hop_size
window = scipy.signal.get_window(window, window_size)
N = window_size // 2
frames = np.concatenate([x[np.newaxis, i * hop_size : i * hop_size + window_size] for i in range(num_spectra)]) * window
psd = np.abs(np.fft.fft(frames, axis=1)[:, :N + 1]) ** 2
return psd
def frequency_mask(num_bands, up_factor, down_factor):
up_mask = np.zeros((num_bands, num_bands))
down_mask = np.zeros((num_bands, num_bands))
for i in range(num_bands):
up_mask[i, : i + 1] = up_factor ** np.arange(i, -1, -1)
down_mask[i, i :] = down_factor ** np.arange(num_bands - i)
return down_mask @ up_mask
def rect_fb(band_limits, num_bins=None):
num_bands = len(band_limits) - 1
if num_bins is None:
num_bins = band_limits[-1]
fb = np.zeros((num_bands, num_bins))
for i in range(num_bands):
fb[i, band_limits[i]:band_limits[i+1]] = 1
return fb
def compare(x, y):
""" Modified version of opus_compare for 16 kHz mono signals
Args:
x (np.ndarray): reference input signal scaled to [-1, 1]
y (np.ndarray): test signal scaled to [-1, 1]
Returns:
float: perceptually weighted error
"""
# filter bank: bark scale with minimum-2-bin bands and cutoff at 7.5 kHz
band_limits = [0, 2, 4, 6, 7, 9, 11, 13, 15, 18, 22, 26, 31, 36, 43, 51, 60, 75]
num_bands = len(band_limits) - 1
fb = rect_fb(band_limits, num_bins=81)
# trim samples to same size
num_samples = min(len(x), len(y))
x = x[:num_samples] * 2**15
y = y[:num_samples] * 2**15
psd_x = power_spectrum(x) + 100000
psd_y = power_spectrum(y) + 100000
num_frames = psd_x.shape[0]
# average band energies
be_x = (psd_x @ fb.T) / np.sum(fb, axis=1)
# frequecy masking
f_mask = frequency_mask(num_bands, 0.1, 0.03)
mask_x = be_x @ f_mask.T
# temporal masking
for i in range(1, num_frames):
mask_x[i, :] += 0.5 * mask_x[i-1, :]
# apply mask
masked_psd_x = psd_x + 0.1 * (mask_x @ fb)
masked_psd_y = psd_y + 0.1 * (mask_x @ fb)
# 2-frame average
masked_psd_x = masked_psd_x[1:] + masked_psd_x[:-1]
masked_psd_y = masked_psd_y[1:] + masked_psd_y[:-1]
# distortion metric
re = masked_psd_y / masked_psd_x
im = re - np.log(re) - 1
Eb = ((im @ fb.T) / np.sum(fb, axis=1))
Ef = np.mean(Eb ** 2, axis=1)
err = np.mean(Ef ** 4, axis=0) ** (1/16)
return float(err)