more cleanup
This commit is contained in:
parent
7f0d456c4b
commit
1032e47d3f
2 changed files with 0 additions and 123 deletions
55
dnn/nnet.h
55
dnn/nnet.h
|
@ -92,16 +92,6 @@ typedef struct {
|
||||||
int activation;
|
int activation;
|
||||||
} DenseLayer;
|
} DenseLayer;
|
||||||
|
|
||||||
typedef struct {
|
|
||||||
const float *bias;
|
|
||||||
const float *input_weights;
|
|
||||||
const float *factor;
|
|
||||||
int nb_inputs;
|
|
||||||
int nb_neurons;
|
|
||||||
int nb_channels;
|
|
||||||
int activation;
|
|
||||||
} MDenseLayer;
|
|
||||||
|
|
||||||
typedef struct {
|
typedef struct {
|
||||||
const float *bias;
|
const float *bias;
|
||||||
const float *subias;
|
const float *subias;
|
||||||
|
@ -114,17 +104,6 @@ typedef struct {
|
||||||
int reset_after;
|
int reset_after;
|
||||||
} GRULayer;
|
} GRULayer;
|
||||||
|
|
||||||
typedef struct {
|
|
||||||
const float *bias;
|
|
||||||
const float *subias;
|
|
||||||
const float *diag_weights;
|
|
||||||
const qweight *recurrent_weights;
|
|
||||||
const int *idx;
|
|
||||||
int nb_neurons;
|
|
||||||
int activation;
|
|
||||||
int reset_after;
|
|
||||||
} SparseGRULayer;
|
|
||||||
|
|
||||||
typedef struct {
|
typedef struct {
|
||||||
const float *bias;
|
const float *bias;
|
||||||
const float *input_weights;
|
const float *input_weights;
|
||||||
|
@ -151,8 +130,6 @@ void compute_activation(float *output, const float *input, int N, int activation
|
||||||
|
|
||||||
void _lpcnet_compute_dense(const DenseLayer *layer, float *output, const float *input);
|
void _lpcnet_compute_dense(const DenseLayer *layer, float *output, const float *input);
|
||||||
|
|
||||||
void compute_mdense(const MDenseLayer *layer, float *output, const float *input);
|
|
||||||
|
|
||||||
void compute_gruB(const GRULayer *gru, const float* gru_b_condition, float *state, const float *input);
|
void compute_gruB(const GRULayer *gru, const float* gru_b_condition, float *state, const float *input);
|
||||||
|
|
||||||
|
|
||||||
|
@ -184,15 +161,6 @@ int conv2d_init(Conv2dLayer *layer, const WeightArray *arrays,
|
||||||
int ktime,
|
int ktime,
|
||||||
int kheight);
|
int kheight);
|
||||||
|
|
||||||
int mdense_init(MDenseLayer *layer, const WeightArray *arrays,
|
|
||||||
const char *bias,
|
|
||||||
const char *input_weights,
|
|
||||||
const char *factor,
|
|
||||||
int nb_inputs,
|
|
||||||
int nb_neurons,
|
|
||||||
int nb_channels,
|
|
||||||
int activation);
|
|
||||||
|
|
||||||
int dense_init(DenseLayer *layer, const WeightArray *arrays,
|
int dense_init(DenseLayer *layer, const WeightArray *arrays,
|
||||||
const char *bias,
|
const char *bias,
|
||||||
const char *input_weights,
|
const char *input_weights,
|
||||||
|
@ -211,30 +179,7 @@ int gru_init(GRULayer *layer, const WeightArray *arrays,
|
||||||
int activation,
|
int activation,
|
||||||
int reset_after);
|
int reset_after);
|
||||||
|
|
||||||
int sparse_gru_init(SparseGRULayer *layer, const WeightArray *arrays,
|
|
||||||
const char *bias,
|
|
||||||
const char *subias,
|
|
||||||
const char *diag_weights,
|
|
||||||
const char *recurrent_weights,
|
|
||||||
const char *idx,
|
|
||||||
int nb_neurons,
|
|
||||||
int activation,
|
|
||||||
int reset_after);
|
|
||||||
|
|
||||||
int conv1d_init(Conv1DLayer *layer, const WeightArray *arrays,
|
|
||||||
const char *bias,
|
|
||||||
const char *input_weights,
|
|
||||||
int nb_inputs,
|
|
||||||
int kernel_size,
|
|
||||||
int nb_neurons,
|
|
||||||
int activation);
|
|
||||||
|
|
||||||
void compute_conv2d(const Conv2dLayer *conv, float *out, float *mem, const float *in, int height, int hstride, int activation);
|
void compute_conv2d(const Conv2dLayer *conv, float *out, float *mem, const float *in, int height, int hstride, int activation);
|
||||||
|
|
||||||
int embedding_init(EmbeddingLayer *layer, const WeightArray *arrays,
|
|
||||||
const char *embedding_weights,
|
|
||||||
int nb_inputs,
|
|
||||||
int dim);
|
|
||||||
|
|
||||||
|
|
||||||
#endif /* _MLP_H_ */
|
#endif /* _MLP_H_ */
|
||||||
|
|
|
@ -175,24 +175,6 @@ int linear_init(LinearLayer *layer, const WeightArray *arrays,
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
int mdense_init(MDenseLayer *layer, const WeightArray *arrays,
|
|
||||||
const char *bias,
|
|
||||||
const char *input_weights,
|
|
||||||
const char *factor,
|
|
||||||
int nb_inputs,
|
|
||||||
int nb_neurons,
|
|
||||||
int nb_channels,
|
|
||||||
int activation)
|
|
||||||
{
|
|
||||||
if ((layer->bias = find_array_check(arrays, bias, nb_neurons*nb_channels*sizeof(layer->bias[0]))) == NULL) return 1;
|
|
||||||
if ((layer->input_weights = find_array_check(arrays, input_weights, nb_inputs*nb_channels*nb_neurons*sizeof(layer->input_weights[0]))) == NULL) return 1;
|
|
||||||
if ((layer->factor = find_array_check(arrays, factor, nb_channels*nb_neurons*sizeof(layer->factor[0]))) == NULL) return 1;
|
|
||||||
layer->nb_inputs = nb_inputs;
|
|
||||||
layer->nb_neurons = nb_neurons;
|
|
||||||
layer->nb_channels = nb_channels;
|
|
||||||
layer->activation = activation;
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
int dense_init(DenseLayer *layer, const WeightArray *arrays,
|
int dense_init(DenseLayer *layer, const WeightArray *arrays,
|
||||||
const char *bias,
|
const char *bias,
|
||||||
|
@ -233,45 +215,6 @@ int gru_init(GRULayer *layer, const WeightArray *arrays,
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
int sparse_gru_init(SparseGRULayer *layer, const WeightArray *arrays,
|
|
||||||
const char *bias,
|
|
||||||
const char *subias,
|
|
||||||
const char *diag_weights,
|
|
||||||
const char *recurrent_weights,
|
|
||||||
const char *idx,
|
|
||||||
int nb_neurons,
|
|
||||||
int activation,
|
|
||||||
int reset_after)
|
|
||||||
{
|
|
||||||
int total_blocks;
|
|
||||||
if ((layer->bias = find_array_check(arrays, bias, 6*nb_neurons*sizeof(layer->bias[0]))) == NULL) return 1;
|
|
||||||
if ((layer->subias = find_array_check(arrays, subias, 6*nb_neurons*sizeof(layer->subias[0]))) == NULL) return 1;
|
|
||||||
if ((layer->diag_weights = find_array_check(arrays, diag_weights, 3*nb_neurons*sizeof(layer->diag_weights[0]))) == NULL) return 1;
|
|
||||||
if ((layer->idx = find_idx_check(arrays, idx, nb_neurons, 3*nb_neurons, &total_blocks)) == NULL) return 1;
|
|
||||||
if ((layer->recurrent_weights = find_array_check(arrays, recurrent_weights, SPARSE_BLOCK_SIZE*total_blocks*sizeof(layer->recurrent_weights[0]))) == NULL) return 1;
|
|
||||||
layer->nb_neurons = nb_neurons;
|
|
||||||
layer->activation = activation;
|
|
||||||
layer->reset_after = reset_after;
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
int conv1d_init(Conv1DLayer *layer, const WeightArray *arrays,
|
|
||||||
const char *bias,
|
|
||||||
const char *input_weights,
|
|
||||||
int nb_inputs,
|
|
||||||
int kernel_size,
|
|
||||||
int nb_neurons,
|
|
||||||
int activation)
|
|
||||||
{
|
|
||||||
if ((layer->bias = find_array_check(arrays, bias, nb_neurons*sizeof(layer->bias[0]))) == NULL) return 1;
|
|
||||||
if ((layer->input_weights = find_array_check(arrays, input_weights, kernel_size*nb_inputs*nb_neurons*sizeof(layer->input_weights[0]))) == NULL) return 1;
|
|
||||||
layer->nb_inputs = nb_inputs;
|
|
||||||
layer->kernel_size = kernel_size;
|
|
||||||
layer->nb_neurons = nb_neurons;
|
|
||||||
layer->activation = activation;
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
int conv2d_init(Conv2dLayer *layer, const WeightArray *arrays,
|
int conv2d_init(Conv2dLayer *layer, const WeightArray *arrays,
|
||||||
const char *bias,
|
const char *bias,
|
||||||
const char *float_weights,
|
const char *float_weights,
|
||||||
|
@ -297,17 +240,6 @@ int conv2d_init(Conv2dLayer *layer, const WeightArray *arrays,
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
int embedding_init(EmbeddingLayer *layer, const WeightArray *arrays,
|
|
||||||
const char *embedding_weights,
|
|
||||||
int nb_inputs,
|
|
||||||
int dim)
|
|
||||||
{
|
|
||||||
if ((layer->embedding_weights = find_array_check(arrays, embedding_weights, nb_inputs*dim*sizeof(layer->embedding_weights[0]))) == NULL) return 1;
|
|
||||||
layer->nb_inputs = nb_inputs;
|
|
||||||
layer->dim = dim;
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#if 0
|
#if 0
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue