added weight-exchange library

This commit is contained in:
Jan Buethe 2023-07-22 13:00:21 -07:00
parent 8f7c72a662
commit 0e5c103d1a
No known key found for this signature in database
GPG key ID: 9E32027A35B36314
11 changed files with 827 additions and 0 deletions

View file

@ -0,0 +1,21 @@
# weight-exchange
## Weight Exchange
Repo wor exchanging weights betweeen torch an tensorflow.keras modules, using an intermediate numpy format.
Routines for loading/dumping torch weights are located in exchange/torch and can be loaded with
```
import exchange.torch
```
and routines for loading/dumping tensorflow weights are located in exchange/tf and can be loaded with
```
import exchange.tf
```
Note that `exchange.torch` requires torch to be installed and `exchange.tf` requires tensorflow. To avoid the necessity of installing both torch and tensorflow in the working environment, none of these submodules is imported when calling `import exchange`. Similarly, the requirements listed in `requirements.txt` do include neither Tensorflow or Pytorch.
## C export
The module `exchange.c_export` contains routines to export weights to C files. On the long run it will be possible to call all `dump_...` functions with either a path string or a `CWriter` instance based on which the export format is chosen. This is currently only implemented for `torch.nn.GRU`, `torch.nn.Linear` and `torch.nn.Conv1d`.

View file

@ -0,0 +1 @@
numpy

View file

@ -0,0 +1,19 @@
#!/usr/bin/env/python
import os
from setuptools import setup
lib_folder = os.path.dirname(os.path.realpath(__file__))
with open(os.path.join(lib_folder, 'requirements.txt'), 'r') as f:
install_requires = list(f.read().splitlines())
print(install_requires)
setup(name='wexchange',
version='1.4',
author='Jan Buethe',
author_email='jbuethe@amazon.de',
description='Weight-exchange library between Pytorch and Tensorflow',
packages=['wexchange', 'wexchange.tf', 'wexchange.torch', 'wexchange.c_export'],
install_requires=install_requires
)

View file

@ -0,0 +1 @@
from . import c_export

View file

@ -0,0 +1,2 @@
from .c_writer import CWriter
from .common import print_gru_layer, print_dense_layer, print_conv1d_layer, print_vector

View file

@ -0,0 +1,143 @@
import os
from collections import OrderedDict
class CWriter:
def __init__(self,
filename_without_extension,
message=None,
header_only=False,
enable_binary_blob=False,
create_state_struct=False,
model_struct_name="Model",
nnet_header="nnet.h"):
"""
Writer class for creating souce and header files for weight exports to C
Parameters:
-----------
filename_without_extension: str
filename from which .c and .h files are created
message: str, optional
if given and not None, this message will be printed as comment in the header file
header_only: bool, optional
if True, only a header file is created; defaults to False
enable_binary_blob: bool, optional
if True, export is done in binary blob format and a model type is created; defaults to False
create_state_struct: bool, optional
if True, a state struct type is created in the header file; if False, state sizes are defined as macros; defaults to False
model_struct_name: str, optional
name used for the model struct type; only relevant when enable_binary_blob is True; defaults to "Model"
nnet_header: str, optional
name of header nnet header file; defaults to nnet.h
"""
self.header_only = header_only
self.enable_binary_blob = enable_binary_blob
self.create_state_struct = create_state_struct
self.model_struct_name = model_struct_name
# for binary blob format, format is key=<layer name>, value=(<layer type>, <init call>)
self.layer_dict = OrderedDict()
# for binary blob format, format is key=<layer name>, value=<layer type>
self.weight_arrays = set()
# form model struct, format is key=<layer name>, value=<number of elements>
self.state_dict = OrderedDict()
self.header = open(filename_without_extension + ".h", "w")
header_name = os.path.basename(filename_without_extension) + '.h'
if message is not None:
self.header.write(f"/* {message} */\n\n")
self.header_guard = os.path.basename(filename_without_extension).upper() + "_H"
self.header.write(
f'''
#ifndef {self.header_guard}
#define {self.header_guard}
#include "{nnet_header}"
'''
)
if not self.header_only:
self.source = open(filename_without_extension + ".c", "w")
if message is not None:
self.source.write(f"/* {message} */\n\n")
self.source.write(
f"""
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
""")
self.source.write(f'#include "{header_name}"\n\n')
def _finalize_header(self):
# create model type
if self.enable_binary_blob:
self.header.write(f"\nstruct {self.model_struct_name} {{")
for name, data in self.layer_dict.items():
layer_type = data[0]
self.header.write(f"\n {layer_type} {name};")
self.header.write(f"\n}};\n")
init_prototype = f"int init_{self.model_struct_name.lower()}({self.model_struct_name} *model, const WeightArray *arrays)"
self.header.write(f"\n{init_prototype};\n")
self.header.write(f"\n#endif /* {self.header_guard} */\n")
def _finalize_source(self):
if self.enable_binary_blob:
# create weight array
self.source.write("\n#ifndef USE_WEIGHTS_FILE\n")
self.source.write(f"const WeightArray {self.model_struct_name.lower()}_arrays[] = {{\n")
for name in self.weight_arrays:
self.source.write(f"#ifdef WEIGHTS_{name}_DEFINED\n")
self.source.write(f' {{"{name}", WEIGHTS_{name}_TYPE, sizeof({name}), {name}}},\n')
self.source.write(f"#endif\n")
self.source.write(" {NULL, 0, 0, NULL}\n")
self.source.write("};\n")
self.source.write("#endif /* USE_WEIGHTS_FILE */\n")
# create init function definition
init_prototype = f"int init_{self.model_struct_name.lower()}({self.model_struct_name} *model, const WeightArray *arrays)"
self.source.write("\n#ifndef DUMP_BINARY_WEIGHTS\n")
self.source.write(f"{init_prototype} {{\n")
for name, data in self.layer_dict.items():
self.source.write(f" if ({data[1]}) return 1;\n")
self.source.write(" return 0;\n")
self.source.write("}\n")
self.source.write("#endif /* DUMP_BINARY_WEIGHTS */\n")
def close(self):
if not self.header_only:
self._finalize_source()
self.source.close()
self._finalize_header()
self.header.close()
def __del__(self):
try:
self.close()
except:
pass

View file

@ -0,0 +1,315 @@
'''Copyright (c) 2017-2018 Mozilla
Copyright (c) 2022 Amazon
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
'''
import numpy as np
from .c_writer import CWriter
def print_vector(writer, vector, name, dtype='float', dotp=False, static=True):
f = writer.source
binary_blob = writer.enable_binary_blob
if binary_blob:
f.write(
f'''
#ifndef USE_WEIGHTS_FILE
#define WEIGHTS_{name}_DEFINED
#define WEIGHTS_{name}_TYPE WEIGHT_TYPE_{"qweight" if dotp else "float"}
'''
)
writer.weight_arrays.add(name)
if dotp:
vector = vector.reshape((vector.shape[0]//4, 4, vector.shape[1]//8, 8))
vector = vector.transpose((2, 0, 3, 1))
v = np.reshape(vector, (-1))
if static:
f.write('static ')
f.write(f'const {dtype} {name}[{len(v)}] = {{\n ')
for i in range(0, len(v)):
f.write(f'{v[i]}')
if (i!=len(v)-1):
f.write(',')
else:
break
if (i%8==7):
f.write("\n ")
else:
f.write(" ")
f.write('\n};\n\n')
if binary_blob:
f.write(
f'''
#endif /* USE_WEIGHTS_FILE */
'''
)
return vector
def print_sparse_vector(writer, A, name, have_diag=True):
f = writer.source
N = A.shape[0]
M = A.shape[1]
W = np.zeros((0,), dtype='int')
W0 = np.zeros((0,))
if have_diag:
diag = np.concatenate([np.diag(A[:,:N]), np.diag(A[:,N:2*N]), np.diag(A[:,2*N:])])
A[:,:N] = A[:,:N] - np.diag(np.diag(A[:,:N]))
A[:,N:2*N] = A[:,N:2*N] - np.diag(np.diag(A[:,N:2*N]))
A[:,2*N:] = A[:,2*N:] - np.diag(np.diag(A[:,2*N:]))
print_vector(writer, diag, name + '_diag')
AQ = np.minimum(127, np.maximum(-128, np.round(A*128))).astype('int')
idx = np.zeros((0,), dtype='int')
for i in range(M//8):
pos = idx.shape[0]
idx = np.append(idx, -1)
nb_nonzero = 0
for j in range(N//4):
block = A[j*4:(j+1)*4, i*8:(i+1)*8]
qblock = AQ[j*4:(j+1)*4, i*8:(i+1)*8]
if np.sum(np.abs(block)) > 1e-10:
nb_nonzero = nb_nonzero + 1
idx = np.append(idx, j*4)
vblock = qblock.transpose((1,0)).reshape((-1,))
W0 = np.concatenate([W0, block.reshape((-1,))])
W = np.concatenate([W, vblock])
idx[pos] = nb_nonzero
f.write('#ifdef DOT_PROD\n')
print_vector(writer, W, name, dtype='qweight')
f.write('#else /*DOT_PROD*/\n')
print_vector(writer, W0, name, dtype='qweight')
f.write('#endif /*DOT_PROD*/\n')
print_vector(writer, idx, name + '_idx', dtype='int')
return AQ
def _check_activation(activation):
if not activation in {"TANH", "SIGMOID", "LINEAR", "SWISH", "RELU", "SOFTMAX"}:
raise ValueError(f"error: unknown activation {activation}")
def print_dense_layer(writer : CWriter,
name : str,
weight : np.ndarray,
bias : np.ndarray,
activation: str,
format : str = 'torch'):
_check_activation(activation)
if format == 'torch':
weight = weight.transpose()
print_vector(writer, weight, name + "_weights")
print_vector(writer, bias, name + "_bias")
writer.header.write(f"\n#define {name.upper()}_OUT_SIZE {weight.shape[1]}\n")
if writer.enable_binary_blob:
init_call = f'dense_init(&model->{name}, arrays, "{name}_bias", "{name}_weights", {weight.shape[0]}, {weight.shape[1]}, ACTIVATION_{activation})'
writer.layer_dict[name] = ('DenseLayer', init_call)
else:
writer.source.write(
f"""
const DenseLayer {name} = {{
{name}_bias,
{name}_weights,
{weight.shape[0]},
{weight.shape[1]},
ACTIVATION_{activation}
}};
"""
)
writer.header.write(f"\nextern const DenseLayer {name};\n\n")
def print_conv1d_layer(writer : CWriter,
name : str,
weight : np.ndarray,
bias : np.ndarray,
activation: str,
format : str = 'torch'):
_check_activation(activation)
if format == "torch":
# convert to channels last
weight = np.transpose(weight, (2, 1, 0))
print_vector(writer, weight, name + "_weights")
print_vector(writer, bias, name + "_bias")
writer.header.write(f"\n#define {name.upper()}_OUT_SIZE {weight.shape[2]}\n")
writer.header.write(f"\n#define {name.upper()}_STATE_SIZE ({weight.shape[1]} * ({weight.shape[0] - 1}))\n")
writer.header.write(f"\n#define {name.upper()}_DELAY {(weight.shape[0] - 1) // 2}\n") # CAVE: delay is not a property of the conv layer
if writer.enable_binary_blob:
init_call = f'conv1d_init(&model->{name}, arrays, "{name}_bias", "{name}_weights", {weight.shape[1]}, {weight.shape[0]}, {weight.shape[2]}, ACTIVATION_{activation})'
writer.layer_dict[name] = ('Conv1DLayer', init_call)
else:
writer.source.write(
f"""
const Conv1DLayer {name} = {{
{name}_bias,
{name}_weights,
{weight.shape[1]},
{weight.shape[0]},
{weight.shape[2]},
ACTIVATION_{activation}
}};
"""
)
writer.header.write(f"\nextern const Conv1DLayer {name};\n\n")
return weight.shape[0] * weight.shape[1]
def print_gru_layer(writer : CWriter,
name : str,
weight : np.ndarray,
recurrent_weight : np.ndarray,
bias : np.ndarray,
recurrent_bias : np.ndarray,
activation: str,
format : str = 'torch',
dotp : bool = False,
input_sparse : bool = False,
reset_after : int = 0
):
_check_activation(activation)
if format == "torch":
# transpose weight matrices and change gate order from rzn to zrn
N = weight.shape[0] // 3
for x in [weight, recurrent_weight, bias, recurrent_bias]:
tmp = x[0:N].copy()
x[0:N] = x[N:2*N]
x[N:2*N] = tmp
weight = weight.transpose()
recurrent_weight = recurrent_weight.transpose()
# input weights
if input_sparse:
qweight = print_sparse_vector(writer, weight, name + '_weights', have_diag=False)
else:
qweight = np.clip(np.round(128. * weight).astype('int'), -128, 127)
if dotp:
writer.source.write("#ifdef DOT_PROD\n")
print_vector(writer, qweight, name + '_weights', dtype='qweight', dotp=True)
writer.source.write("#else /*DOT_PROD*/\n")
print_vector(writer, weight, name + '_weights')
if dotp:
writer.source.write("#endif /*DOT_PROD*/\n")
# recurrent weights
recurrent_qweight = np.clip(np.round(128. * recurrent_weight).astype('int'), -128, 127)
if dotp:
writer.source.write("#ifdef DOT_PROD\n")
print_vector(writer, recurrent_qweight, name + '_recurrent_weights', dtype='qweight', dotp=True)
writer.source.write("#else /*DOT_PROD*/\n")
print_vector(writer, recurrent_weight, name + '_recurrent_weights')
if dotp:
writer.source.write("#endif /*DOT_PROD*/\n")
# corrected bias for unsigned int matrix multiplication
subias = bias - np.sum(qweight / 128., axis=0)
recurrent_subias = recurrent_bias - np.sum(recurrent_qweight / 128., axis=0)
print_vector(writer, np.concatenate((bias, recurrent_bias)), name + "_bias")
print_vector(writer, np.concatenate((subias, recurrent_subias)), name + "_subias")
# wrapping it up
writer.header.write(f"\n#define {name.upper()}_OUT_SIZE {N}\n")
writer.header.write(f"\n#define {name.upper()}_STATE_SIZE {N}\n")
if writer.enable_binary_blob:
if input_sparse:
init_call = f'gru_init(&model->{name}, arrays, "{name}_bias", "{name}_subias", "{name}_weights", "{name + "_weights_idx"}", "{name}_recurrent_weights", {weight.shape[0]}, {weight.shape[1] // 3}, ACTIVATION_{activation}, {reset_after})'
else:
init_call = f'gru_init(&model->{name}, arrays, "{name}_bias", "{name}_subias", "{name}_weights", NULL, "{name}_recurrent_weights", {weight.shape[0]}, {weight.shape[1] // 3}, ACTIVATION_{activation}, {reset_after})'
writer.layer_dict[name] = ('GRULayer', init_call)
else:
writer.source.write(
f"""
const GRULayer {name} = {{
{name}_bias,
{name}_subias,
{name}_weights,
{name + "_weights_idx" if input_sparse else "NULL"},
{name}_recurrent_weights,
{weight.shape[0]},
{weight.shape[1] // 3},
ACTIVATION_{activation},
{reset_after}
}};
"""
)
writer.header.write(f"\nextern const GRULayer {name};\n")
return N

View file

@ -0,0 +1,5 @@
from .tf import dump_tf_conv1d_weights, load_tf_conv1d_weights
from .tf import dump_tf_dense_weights, load_tf_dense_weights
from .tf import dump_tf_embedding_weights, load_tf_embedding_weights
from .tf import dump_tf_gru_weights, load_tf_gru_weights
from .tf import dump_tf_weights, load_tf_weights

View file

@ -0,0 +1,169 @@
import os
import tensorflow as tf
import numpy as np
from wexchange.c_export import CWriter, print_gru_layer, print_dense_layer, print_conv1d_layer
def dump_tf_gru_weights(where, gru, name=None, input_sparse=False, dotp=False):
assert gru.activation == tf.keras.activations.tanh
assert gru.recurrent_activation == tf.keras.activations.sigmoid
assert gru.reset_after == True
w_ih = gru.weights[0].numpy().transpose().copy()
w_hh = gru.weights[1].numpy().transpose().copy()
b_ih = gru.weights[2].numpy()[0].copy()
b_hh = gru.weights[2].numpy()[1].copy()
if isinstance(where, CWriter):
return print_gru_layer(where, name, w_ih, w_hh, b_ih, b_hh, 'TANH', format='tf', reset_after=1, input_sparse=input_sparse, dotp=dotp)
else:
os.makedirs(where, exist_ok=True)
# zrn => rzn
N = w_ih.shape[0] // 3
for x in [w_ih, w_hh, b_ih, b_hh]:
tmp = x[0:N].copy()
x[0:N] = x[N:2*N]
x[N:2*N] = tmp
np.save(os.path.join(where, 'weight_ih_rzn.npy'), w_ih)
np.save(os.path.join(where, 'weight_hh_rzn.npy'), w_hh)
np.save(os.path.join(where, 'bias_ih_rzn.npy'), b_ih)
np.save(os.path.join(where, 'bias_hh_rzn.npy'), b_hh)
def load_tf_gru_weights(path, gru):
assert gru.activation == tf.keras.activations.tanh
assert gru.recurrent_activation == tf.keras.activations.sigmoid
assert gru.reset_after == True
w_ih = np.load(os.path.join(path, 'weight_ih_rzn.npy'))
w_hh = np.load(os.path.join(path, 'weight_hh_rzn.npy'))
b_ih = np.load(os.path.join(path, 'bias_ih_rzn.npy'))
b_hh = np.load(os.path.join(path, 'bias_hh_rzn.npy'))
# rzn => zrn
N = w_ih.shape[0] // 3
for x in [w_ih, w_hh, b_ih, b_hh]:
tmp = x[0:N].copy()
x[0:N] = x[N:2*N]
x[N:2*N] = tmp
gru.weights[0].assign(tf.convert_to_tensor(w_ih.transpose()))
gru.weights[1].assign(tf.convert_to_tensor(w_hh.transpose()))
gru.weights[2].assign(tf.convert_to_tensor(np.vstack((b_ih, b_hh))))
def dump_tf_dense_weights(where, dense, name=None):
w = dense.weights[0].numpy()
if dense.bias is None:
b = np.zeros(dense.units, dtype=w.dtype)
else:
b = dense.bias.numpy()
if isinstance(where, CWriter):
try:
activation = dense.activation.__name__.upper()
except:
activation = "LINEAR"
return print_dense_layer(where, name, w, b, activation, format='tf')
else:
os.makedirs(where, exist_ok=True)
np.save(os.path.join(where, 'weight.npy'), w.transpose())
np.save(os.path.join(where, 'bias.npy'), b)
def load_tf_dense_weights(path, dense):
w = np.load(os.path.join(path, 'weight.npy')).transpose()
b = np.load(os.path.join(path, 'bias.npy'))
dense.weights[0].assign(tf.convert_to_tensor(w))
if dense.bias is not None:
dense.weights[1].assign(tf.convert_to_tensor(b))
def dump_tf_conv1d_weights(where, conv, name=None):
assert conv.data_format == 'channels_last'
w = conv.weights[0].numpy().copy()
if conv.bias is None:
b = np.zeros(conv.filters, dtype=w.dtype)
else:
b = conv.bias.numpy()
if isinstance(where, CWriter):
try:
activation = conv.activation.__name__.upper()
except:
activation = "LINEAR"
return print_conv1d_layer(where, name, w, b, activation, format='tf')
else:
os.makedirs(where, exist_ok=True)
w = np.transpose(w, (2, 1, 0))
np.save(os.path.join(where, 'weight_oik.npy'), w)
np.save(os.path.join(where, 'bias.npy'), b)
def load_tf_conv1d_weights(path, conv):
w = np.load(os.path.join(path, 'weight_oik.npy'))
b = np.load(os.path.join(path, 'bias.npy'))
w = np.transpose(w, (2, 1, 0))
conv.weights[0].assign(tf.convert_to_tensor(w))
if conv.bias is not None:
conv.weights[1].assign(tf.convert_to_tensor(b))
def dump_tf_embedding_weights(path, emb):
os.makedirs(path, exist_ok=True)
w = emb.weights[0].numpy()
np.save(os.path.join(path, 'weight.npy'), w)
def load_tf_embedding_weights(path, emb):
w = np.load(os.path.join(path, 'weight.npy'))
emb.weights[0].assign(tf.convert_to_tensor(w))
def dump_tf_weights(path, module):
if isinstance(module, tf.keras.layers.Dense):
dump_tf_dense_weights(path, module)
elif isinstance(module, tf.keras.layers.GRU):
dump_tf_gru_weights(path, module)
elif isinstance(module, tf.keras.layers.Conv1D):
dump_tf_conv1d_weights(path, module)
elif isinstance(module, tf.keras.layers.Embedding):
dump_tf_embedding_weights(path, module)
else:
raise ValueError(f'dump_tf_weights: layer of type {type(module)} not supported')
def load_tf_weights(path, module):
if isinstance(module, tf.keras.layers.Dense):
load_tf_dense_weights(path, module)
elif isinstance(module, tf.keras.layers.GRU):
load_tf_gru_weights(path, module)
elif isinstance(module, tf.keras.layers.Conv1D):
load_tf_conv1d_weights(path, module)
elif isinstance(module, tf.keras.layers.Embedding):
load_tf_embedding_weights(path, module)
else:
raise ValueError(f'dump_tf_weights: layer of type {type(module)} not supported')

View file

@ -0,0 +1,5 @@
from .torch import dump_torch_conv1d_weights, load_torch_conv1d_weights
from .torch import dump_torch_dense_weights, load_torch_dense_weights
from .torch import dump_torch_gru_weights, load_torch_gru_weights
from .torch import dump_torch_embedding_weights, load_torch_embedding_weights
from .torch import dump_torch_weights, load_torch_weights

View file

@ -0,0 +1,146 @@
import os
import torch
import numpy as np
from wexchange.c_export import CWriter, print_gru_layer, print_dense_layer, print_conv1d_layer
def dump_torch_gru_weights(where, gru, name=None, input_sparse=False, dotp=False):
assert gru.num_layers == 1
assert gru.bidirectional == False
w_ih = gru.weight_ih_l0.detach().cpu().numpy()
w_hh = gru.weight_hh_l0.detach().cpu().numpy()
b_ih = gru.bias_ih_l0.detach().cpu().numpy()
b_hh = gru.bias_hh_l0.detach().cpu().numpy()
if isinstance(where, CWriter):
return print_gru_layer(where, name, w_ih, w_hh, b_ih, b_hh, 'TANH', format='torch', reset_after=1, input_sparse=input_sparse, dotp=dotp)
else:
os.makedirs(where, exist_ok=True)
np.save(os.path.join(where, 'weight_ih_rzn.npy'), w_ih)
np.save(os.path.join(where, 'weight_hh_rzn.npy'), w_hh)
np.save(os.path.join(where, 'bias_ih_rzn.npy'), b_ih)
np.save(os.path.join(where, 'bias_hh_rzn.npy'), b_hh)
def load_torch_gru_weights(where, gru):
assert gru.num_layers == 1
assert gru.bidirectional == False
w_ih = np.load(os.path.join(where, 'weight_ih_rzn.npy'))
w_hh = np.load(os.path.join(where, 'weight_hh_rzn.npy'))
b_ih = np.load(os.path.join(where, 'bias_ih_rzn.npy'))
b_hh = np.load(os.path.join(where, 'bias_hh_rzn.npy'))
with torch.no_grad():
gru.weight_ih_l0.set_(torch.from_numpy(w_ih))
gru.weight_hh_l0.set_(torch.from_numpy(w_hh))
gru.bias_ih_l0.set_(torch.from_numpy(b_ih))
gru.bias_hh_l0.set_(torch.from_numpy(b_hh))
def dump_torch_dense_weights(where, dense, name=None, activation="LINEAR"):
w = dense.weight.detach().cpu().numpy()
if dense.bias is None:
b = np.zeros(dense.out_features, dtype=w.dtype)
else:
b = dense.bias.detach().cpu().numpy()
if isinstance(where, CWriter):
return print_dense_layer(where, name, w, b, activation, format='torch')
else:
os.makedirs(where, exist_ok=True)
np.save(os.path.join(where, 'weight.npy'), w)
np.save(os.path.join(where, 'bias.npy'), b)
def load_torch_dense_weights(where, dense):
w = np.load(os.path.join(where, 'weight.npy'))
b = np.load(os.path.join(where, 'bias.npy'))
with torch.no_grad():
dense.weight.set_(torch.from_numpy(w))
if dense.bias is not None:
dense.bias.set_(torch.from_numpy(b))
def dump_torch_conv1d_weights(where, conv, name=None, activation="LINEAR"):
w = conv.weight.detach().cpu().numpy()
if conv.bias is None:
b = np.zeros(conv.out_channels, dtype=w.dtype)
else:
b = conv.bias.detach().cpu().numpy()
if isinstance(where, CWriter):
return print_conv1d_layer(where, name, w, b, activation, format='torch')
else:
os.makedirs(where, exist_ok=True)
np.save(os.path.join(where, 'weight_oik.npy'), w)
np.save(os.path.join(where, 'bias.npy'), b)
def load_torch_conv1d_weights(where, conv):
with torch.no_grad():
w = np.load(os.path.join(where, 'weight_oik.npy'))
conv.weight.set_(torch.from_numpy(w))
if type(conv.bias) != type(None):
b = np.load(os.path.join(where, 'bias.npy'))
if conv.bias is not None:
conv.bias.set_(torch.from_numpy(b))
def dump_torch_embedding_weights(where, emb):
os.makedirs(where, exist_ok=True)
w = emb.weight.detach().cpu().numpy()
np.save(os.path.join(where, 'weight.npy'), w)
def load_torch_embedding_weights(where, emb):
w = np.load(os.path.join(where, 'weight.npy'))
with torch.no_grad():
emb.weight.set_(torch.from_numpy(w))
def dump_torch_weights(where, module, name=None, activation="LINEAR", verbose=False, **kwargs):
""" generic function for dumping weights of some torch.nn.Module """
if verbose and name is not None:
print(f"printing layer {name} of type {type(module)}...")
if isinstance(module, torch.nn.Linear):
return dump_torch_dense_weights(where, module, name, activation, **kwargs)
elif isinstance(module, torch.nn.GRU):
return dump_torch_gru_weights(where, module, name, **kwargs)
elif isinstance(module, torch.nn.Conv1d):
return dump_torch_conv1d_weights(where, module, name, **kwargs)
elif isinstance(module, torch.nn.Embedding):
return dump_torch_embedding_weights(where, module)
else:
raise ValueError(f'dump_tf_weights: layer of type {type(module)} not supported')
def load_torch_weights(where, module):
""" generic function for loading weights of some torch.nn.Module """
if isinstance(module, torch.nn.Linear):
load_torch_dense_weights(where, module)
elif isinstance(module, torch.nn.GRU):
load_torch_gru_weights(where, module)
elif isinstance(module, torch.nn.Conv1d):
load_torch_conv1d_weights(where, module)
elif isinstance(module, torch.nn.Embedding):
load_torch_embedding_weights(where, module)
else:
raise ValueError(f'dump_tf_weights: layer of type {type(module)} not supported')