working decoder
This commit is contained in:
parent
87cd75f6f4
commit
08b5fe6cdc
1 changed files with 9 additions and 13 deletions
|
@ -58,7 +58,7 @@ in_data = (in_data.astype('int16')+128).astype('uint8')
|
||||||
out_data = np.reshape(data, (nb_frames, pcm_chunk_size, 1))
|
out_data = np.reshape(data, (nb_frames, pcm_chunk_size, 1))
|
||||||
out_data = (out_data.astype('int16')+128).astype('uint8')
|
out_data = (out_data.astype('int16')+128).astype('uint8')
|
||||||
features = np.reshape(features, (nb_frames, feature_chunk_size, nb_features))
|
features = np.reshape(features, (nb_frames, feature_chunk_size, nb_features))
|
||||||
features = features[:, :, :nb_used_features]
|
features = features[:, :, :]
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -66,38 +66,34 @@ in_data = np.reshape(in_data, (nb_frames*pcm_chunk_size, 1))
|
||||||
out_data = np.reshape(data, (nb_frames*pcm_chunk_size, 1))
|
out_data = np.reshape(data, (nb_frames*pcm_chunk_size, 1))
|
||||||
|
|
||||||
|
|
||||||
model.load_weights('wavenet3h12_30.h5')
|
model.load_weights('wavenet3h13_30.h5')
|
||||||
|
|
||||||
order = 16
|
order = 16
|
||||||
|
|
||||||
pcm = 0.*out_data
|
pcm = 0.*out_data
|
||||||
exc = out_data-0
|
fexc = np.zeros((1, 1, 2), dtype='float32')
|
||||||
pitch = np.zeros((1, 1, 1), dtype='float32')
|
|
||||||
fexc = np.zeros((1, 1, 1), dtype='float32')
|
|
||||||
iexc = np.zeros((1, 1, 1), dtype='int16')
|
iexc = np.zeros((1, 1, 1), dtype='int16')
|
||||||
state = np.zeros((1, lpcnet.rnn_units), dtype='float32')
|
state = np.zeros((1, lpcnet.rnn_units), dtype='float32')
|
||||||
for c in range(1, nb_frames):
|
for c in range(1, nb_frames):
|
||||||
cfeat = enc.predict(features[c:c+1, :, :nb_used_features])
|
cfeat = enc.predict(features[c:c+1, :, :nb_used_features])
|
||||||
for fr in range(1, feature_chunk_size):
|
for fr in range(1, feature_chunk_size):
|
||||||
f = c*feature_chunk_size + fr
|
f = c*feature_chunk_size + fr
|
||||||
a = features[c, fr, nb_used_features:]
|
a = features[c, fr, nb_features-order:]
|
||||||
|
|
||||||
#print(a)
|
#print(a)
|
||||||
gain = 1.;
|
gain = 1.;
|
||||||
period = int(50*features[c, fr, 36]+100)
|
period = int(50*features[c, fr, 36]+100)
|
||||||
period = period - 4
|
period = period - 4
|
||||||
for i in range(frame_size):
|
for i in range(frame_size):
|
||||||
pitch[0, 0, 0] = exc[f*frame_size + i - period, 0]
|
|
||||||
fexc[0, 0, 0] = iexc + 128
|
fexc[0, 0, 0] = iexc + 128
|
||||||
#fexc[0, 0, 0] = in_data[f*frame_size + i, 0]
|
pred = -sum(a*pcm[f*frame_size + i - 1:f*frame_size + i - order-1:-1, 0])
|
||||||
#print(cfeat.shape)
|
fexc[0, 0, 1] = np.minimum(127, lin2ulaw(pred/32768.)) + 128
|
||||||
|
|
||||||
p, state = dec.predict([fexc, cfeat[:, fr:fr+1, :], state])
|
p, state = dec.predict([fexc, cfeat[:, fr:fr+1, :], state])
|
||||||
p = np.maximum(p-0.0003, 0)
|
p = np.maximum(p-0.001, 0)
|
||||||
p = p/(1e-5 + np.sum(p))
|
p = p/(1e-5 + np.sum(p))
|
||||||
#print(np.sum(p))
|
|
||||||
iexc[0, 0, 0] = np.argmax(np.random.multinomial(1, p[0,0,:], 1))-128
|
iexc[0, 0, 0] = np.argmax(np.random.multinomial(1, p[0,0,:], 1))-128
|
||||||
exc[f*frame_size + i] = iexc[0, 0, 0]/16.
|
|
||||||
#out_data[f*frame_size + i, 0] = iexc[0, 0, 0]
|
|
||||||
pcm[f*frame_size + i, 0] = 32768*ulaw2lin(iexc[0, 0, 0]*1.0)
|
pcm[f*frame_size + i, 0] = 32768*ulaw2lin(iexc[0, 0, 0]*1.0)
|
||||||
print(iexc[0, 0, 0], out_data[f*frame_size + i, 0], pcm[f*frame_size + i, 0])
|
print(iexc[0, 0, 0], out_data[f*frame_size + i, 0], pcm[f*frame_size + i, 0])
|
||||||
|
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue