mirror of
https://github.com/xiph/opus.git
synced 2025-05-22 03:18:30 +00:00
updated osce readme
This commit is contained in:
parent
8f9a7e23c8
commit
0563d71b25
1 changed files with 51 additions and 2 deletions
|
@ -1,7 +1,6 @@
|
|||
# Opus Speech Coding Enhancement
|
||||
|
||||
This folder hosts models for enhancing Opus SILK. See related Opus repo https://gitlab.xiph.org/xiph/opus/-/tree/exp-neural-silk-enhancement
|
||||
for feature generation.
|
||||
This folder hosts models for enhancing Opus SILK.
|
||||
|
||||
## Environment setup
|
||||
The code is tested with python 3.11. Conda setup is done via
|
||||
|
@ -12,3 +11,53 @@ The code is tested with python 3.11. Conda setup is done via
|
|||
`conda activate osce`
|
||||
|
||||
`python -m pip install -r requirements.txt`
|
||||
|
||||
|
||||
## Generating training data
|
||||
First step is to convert all training items to 16 kHz and 16 bit pcm and then concatenate them. A convenient way to do this is to create a file list and then run
|
||||
|
||||
`python scripts/concatenator.py filelist 16000 dataset/clean.s16 --db_min -40 --db_max 0`
|
||||
|
||||
which on top provides some random scaling.
|
||||
|
||||
Second step is to run a patched version of opus_demo in the dataset folder, which will produce the coded output and add feature files. To build the patched opus_demo binary, check out the exp-neural-silk-enhancement branch and build opus_demo the usual way. Then run
|
||||
|
||||
`cd dataset && <path_to_patched_opus_demo>/opus_demo voip 16000 1 9000 -silk_random_switching 249 clean.s16 coded.s16 `
|
||||
|
||||
The argument to -silk_random_switching specifies the number of frames after which parameters are switched randomly.
|
||||
|
||||
## Generating inference data
|
||||
Generating inference data is analogous to generating training data. Given an item 'item1.wav' run
|
||||
`mkdir item1.se && sox item1.wav -r 16000 -e signed-integer -b 16 item1.raw && cd item1.se && <path_to_patched_opus_demo>/opus_demo voip 16000 1 <bitrate> ../item1.raw noisy.s16`
|
||||
|
||||
The folder item1.se then serves as input for the test_model.py script or for the --testdata argument of train_model.py resp. adv_train_model.py
|
||||
|
||||
## Regression loss based training
|
||||
Create a default setup for LACE or NoLACE via
|
||||
|
||||
`python make_default_setup.py model.yml --model lace/nolace --path2dataset <path2dataset>`
|
||||
|
||||
Then run
|
||||
|
||||
`python train_model.py model.yml <output folder> --no-redirect`
|
||||
|
||||
for running the training script in foreground or
|
||||
|
||||
`nohup python train_model.py model.yml <output folder> &`
|
||||
|
||||
to run it in background. In the latter case the output is written to `<output folder>/out.txt`.
|
||||
|
||||
## Adversarial training (NoLACE only)
|
||||
Create a default setup for NoLACE via
|
||||
|
||||
`python make_default_setup.py nolace_adv.yml --model nolace --adversarial --path2dataset <path2dataset>`
|
||||
|
||||
Then run
|
||||
|
||||
`python adv_train_model.py nolace_adv.yml <output folder> --no-redirect`
|
||||
|
||||
for running the training script in foreground or
|
||||
|
||||
`nohup python adv_train_model.py nolace_adv.yml <output folder> &`
|
||||
|
||||
to run it in background. In the latter case the output is written to `<output folder>/out.txt`.
|
Loading…
Add table
Add a link
Reference in a new issue