Rename *KEYPAIR* to *KEY_PAIR*

Be consistent with PUBLIC_KEY.

perl -i -pe 's/KEYPAIR/KEY_PAIR/g' $(git ls-files)
This commit is contained in:
Gilles Peskine 2019-05-16 19:39:54 +02:00
parent 683898c079
commit c93b80c350
14 changed files with 270 additions and 270 deletions

View file

@ -625,7 +625,7 @@ psa_status_t psa_destroy_key(psa_key_handle_t handle);
* correct.
* - For Triple-DES, the format is the concatenation of the
* two or three DES keys.
* - For RSA key pairs (#PSA_KEY_TYPE_RSA_KEYPAIR), the format
* - For RSA key pairs (#PSA_KEY_TYPE_RSA_KEY_PAIR), the format
* is the non-encrypted DER encoding of the representation defined by
* PKCS\#1 (RFC 8017) as `RSAPrivateKey`, version 0.
* ```
@ -642,7 +642,7 @@ psa_status_t psa_destroy_key(psa_key_handle_t handle);
* }
* ```
* - For elliptic curve key pairs (key types for which
* #PSA_KEY_TYPE_IS_ECC_KEYPAIR is true), the format is
* #PSA_KEY_TYPE_IS_ECC_KEY_PAIR is true), the format is
* a representation of the private value as a `ceiling(m/8)`-byte string
* where `m` is the bit size associated with the curve, i.e. the bit size
* of the order of the curve's coordinate field. This byte string is
@ -653,7 +653,7 @@ psa_status_t psa_destroy_key(psa_key_handle_t handle);
* This is the content of the `privateKey` field of the `ECPrivateKey`
* format defined by RFC 5915.
* - For Diffie-Hellman key exchange key pairs (key types for which
* #PSA_KEY_TYPE_IS_DH_KEYPAIR is true), the
* #PSA_KEY_TYPE_IS_DH_KEY_PAIR is true), the
* format is the representation of the private key `x` as a big-endian byte
* string. The length of the byte string is the private key size in bytes
* (leading zeroes are not stripped).
@ -746,7 +746,7 @@ psa_status_t psa_export_key(psa_key_handle_t handle,
* \retval #PSA_ERROR_BUFFER_TOO_SMALL
* The size of the \p data buffer is too small. You can determine a
* sufficient buffer size by calling
* #PSA_KEY_EXPORT_MAX_SIZE(#PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(\c type), \c bits)
* #PSA_KEY_EXPORT_MAX_SIZE(#PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(\c type), \c bits)
* where \c type is the key type
* and \c bits is the key size in bits.
* \retval #PSA_ERROR_COMMUNICATION_FAILURE
@ -3219,7 +3219,7 @@ psa_status_t psa_key_derivation_output_bytes(
* - #PSA_KEY_TYPE_HMAC.
*
* - For ECC keys on a Montgomery elliptic curve
* (#PSA_KEY_TYPE_ECC_KEYPAIR(\c curve) where \c curve designates a
* (#PSA_KEY_TYPE_ECC_KEY_PAIR(\c curve) where \c curve designates a
* Montgomery curve), this function always draws a byte string whose
* length is determined by the curve, and sets the mandatory bits
* accordingly. That is:
@ -3247,10 +3247,10 @@ psa_status_t psa_key_derivation_output_bytes(
* discard the first 8 bytes, use the next 8 bytes as the first key,
* and continue reading output from the operation to derive the other
* two keys).
* - Finite-field Diffie-Hellman keys (#PSA_KEY_TYPE_DH_KEYPAIR(\c group)
* - Finite-field Diffie-Hellman keys (#PSA_KEY_TYPE_DH_KEY_PAIR(\c group)
* where \c group designates any Diffie-Hellman group) and
* ECC keys on a Weierstrass elliptic curve
* (#PSA_KEY_TYPE_ECC_KEYPAIR(\c curve) where \c curve designates a
* (#PSA_KEY_TYPE_ECC_KEY_PAIR(\c curve) where \c curve designates a
* Weierstrass curve).
* For these key types, interpret the byte string as integer
* in big-endian order. Discard it if it is not in the range
@ -3265,7 +3265,7 @@ psa_status_t psa_key_derivation_output_bytes(
* in NIST SP 800-56A §5.6.1.2.2 or
* FIPS 186-4 §B.4.2 for elliptic curve keys.
*
* - For other key types, including #PSA_KEY_TYPE_RSA_KEYPAIR,
* - For other key types, including #PSA_KEY_TYPE_RSA_KEY_PAIR,
* the way in which the operation output is consumed is
* implementation-defined.
*
@ -3424,7 +3424,7 @@ psa_status_t psa_generate_random(uint8_t *output,
* Its location, policy, type and size are taken from \p attributes.
*
* The following type-specific considerations apply:
* - For RSA keys (#PSA_KEY_TYPE_RSA_KEYPAIR),
* - For RSA keys (#PSA_KEY_TYPE_RSA_KEY_PAIR),
* the public exponent is 65537.
* The modulus is a product of two probabilistic primes
* between 2^{n-1} and 2^n where n is the bit size specified in the