Merge remote-tracking branch 'public/pr/1136' into development

* public/pr/1136:
  Timing self test: shorten redundant tests
  Timing self test: increased duration
  Timing self test: increased tolerance
  Timing unit tests: more protection against infinite loops
  Unit test for mbedtls_timing_hardclock
  New timing unit tests
  selftest: allow excluding a subset of the tests
  selftest: allow running a subset of the tests
  selftest: refactor to separate the list of tests from the logic
  Timing self test: print some diagnosis information
  mbedtls_timing_get_timer: don't use uninitialized memory
  timing interface documentation: minor clarifications
  Timing: fix mbedtls_set_alarm(0) on Unix/POSIX
This commit is contained in:
Manuel Pégourié-Gonnard 2017-12-26 10:42:20 +01:00
commit ae3925c774
6 changed files with 722 additions and 317 deletions

View file

@ -1,7 +1,7 @@
/**
* \file timing.h
*
* \brief Portable interface to the CPU cycle counter
* \brief Portable interface to timeouts and to the CPU cycle counter
*
* Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
* SPDX-License-Identifier: Apache-2.0
@ -65,6 +65,9 @@ extern volatile int mbedtls_timing_alarmed;
* \warning This is only a best effort! Do not rely on this!
* In particular, it is known to be unreliable on virtual
* machines.
*
* \note This value starts at an unspecified origin and
* may wrap around.
*/
unsigned long mbedtls_timing_hardclock( void );
@ -72,7 +75,18 @@ unsigned long mbedtls_timing_hardclock( void );
* \brief Return the elapsed time in milliseconds
*
* \param val points to a timer structure
* \param reset if set to 1, the timer is restarted
* \param reset If 0, query the elapsed time. Otherwise (re)start the timer.
*
* \return Elapsed time since the previous reset in ms. When
* restarting, this is always 0.
*
* \note To initialize a timer, call this function with reset=1.
*
* Determining the elapsed time and resetting the timer is not
* atomic on all platforms, so after the sequence
* `{ get_timer(1); ...; time1 = get_timer(1); ...; time2 =
* get_timer(0) }` the value time1+time2 is only approximately
* the delay since the first reset.
*/
unsigned long mbedtls_timing_get_timer( struct mbedtls_timing_hr_time *val, int reset );
@ -80,6 +94,7 @@ unsigned long mbedtls_timing_get_timer( struct mbedtls_timing_hr_time *val, int
* \brief Setup an alarm clock
*
* \param seconds delay before the "mbedtls_timing_alarmed" flag is set
* (must be >=0)
*
* \warning Only one alarm at a time is supported. In a threaded
* context, this means one for the whole process, not one per
@ -91,11 +106,15 @@ void mbedtls_set_alarm( int seconds );
* \brief Set a pair of delays to watch
* (See \c mbedtls_timing_get_delay().)
*
* \param data Pointer to timing data
* \param data Pointer to timing data.
* Must point to a valid \c mbedtls_timing_delay_context struct.
* \param int_ms First (intermediate) delay in milliseconds.
* The effect if int_ms > fin_ms is unspecified.
* \param fin_ms Second (final) delay in milliseconds.
* Pass 0 to cancel the current delay.
*
* \note To set a single delay, either use \c mbedtls_timing_set_timer
* directly or use this function with int_ms == fin_ms.
*/
void mbedtls_timing_set_delay( void *data, uint32_t int_ms, uint32_t fin_ms );
@ -106,7 +125,7 @@ void mbedtls_timing_set_delay( void *data, uint32_t int_ms, uint32_t fin_ms );
* \param data Pointer to timing data
* Must point to a valid \c mbedtls_timing_delay_context struct.
*
* \return -1 if cancelled (fin_ms = 0)
* \return -1 if cancelled (fin_ms = 0),
* 0 if none of the delays are passed,
* 1 if only the intermediate delay is passed,
* 2 if the final delay is passed.