Merge remote-tracking branch 'public/pr/1410' into development

This commit is contained in:
Simon Butcher 2018-06-01 19:25:56 +01:00
commit 246cb05a92
28 changed files with 3015 additions and 21 deletions

View file

@ -310,7 +310,49 @@ int mbedtls_aes_crypt_cfb8( mbedtls_aes_context *ctx,
* must use the context initialized with mbedtls_aes_setkey_enc()
* for both #MBEDTLS_AES_ENCRYPT and #MBEDTLS_AES_DECRYPT.
*
* \warning You must keep the maximum use of your counter in mind.
* \warning You must never reuse a nonce value with the same key. Doing so
* would void the encryption for the two messages encrypted with
* the same nonce and key.
*
* There are two common strategies for managing nonces with CTR:
*
* 1. You can handle everything as a single message processed over
* successive calls to this function. In that case, you want to
* set \p nonce_counter and \p nc_off to 0 for the first call, and
* then preserve the values of \p nonce_counter, \p nc_off and \p
* stream_block across calls to this function as they will be
* updated by this function.
*
* With this strategy, you must not encrypt more than 2**128
* blocks of data with the same key.
*
* 2. You can encrypt separate messages by dividing the \p
* nonce_counter buffer in two areas: the first one used for a
* per-message nonce, handled by yourself, and the second one
* updated by this function internally.
*
* For example, you might reserve the first 12 bytes for the
* per-message nonce, and the last 4 bytes for internal use. In that
* case, before calling this function on a new message you need to
* set the first 12 bytes of \p nonce_counter to your chosen nonce
* value, the last 4 to 0, and \p nc_off to 0 (which will cause \p
* stream_block to be ignored). That way, you can encrypt at most
* 2**96 messages of up to 2**32 blocks each with the same key.
*
* The per-message nonce (or information sufficient to reconstruct
* it) needs to be communicated with the ciphertext and must be unique.
* The recommended way to ensure uniqueness is to use a message
* counter. An alternative is to generate random nonces, but this
* limits the number of messages that can be securely encrypted:
* for example, with 96-bit random nonces, you should not encrypt
* more than 2**32 messages with the same key.
*
* Note that for both stategies, sizes are measured in blocks and
* that an AES block is 16 bytes.
*
* \warning Upon return, \p stream_block contains sensitive data. Its
* content must not be written to insecure storage and should be
* securely discarded as soon as it's no longer needed.
*
* \param ctx The AES context to use for encryption or decryption.
* \param length The length of the input data.

331
include/mbedtls/aria.h Normal file
View file

@ -0,0 +1,331 @@
/**
* \file aria.h
*
* \brief ARIA block cipher
*
* The ARIA algorithm is a symmetric block cipher that can encrypt and
* decrypt information. It is defined by the Korean Agency for
* Technology and Standards (KATS) in <em>KS X 1213:2004</em> (in
* Korean, but see http://210.104.33.10/ARIA/index-e.html in English)
* and also described by the IETF in <em>RFC 5794</em>.
*/
/* Copyright (C) 2006-2018, ARM Limited, All Rights Reserved
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* This file is part of mbed TLS (https://tls.mbed.org)
*/
#ifndef MBEDTLS_ARIA_H
#define MBEDTLS_ARIA_H
#if !defined(MBEDTLS_CONFIG_FILE)
#include "config.h"
#else
#include MBEDTLS_CONFIG_FILE
#endif
#include <stddef.h>
#include <stdint.h>
#define MBEDTLS_ARIA_ENCRYPT 1 /**< ARIA encryption. */
#define MBEDTLS_ARIA_DECRYPT 0 /**< ARIA decryption. */
#define MBEDTLS_ARIA_BLOCKSIZE 16 /**< ARIA block size in bytes. */
#define MBEDTLS_ARIA_MAX_ROUNDS 16 /**< Maxiumum number of rounds in ARIA. */
#define MBEDTLS_ARIA_MAX_KEYSIZE 32 /**< Maximum size of an ARIA key in bytes. */
#define MBEDTLS_ERR_ARIA_INVALID_KEY_LENGTH -0x005C /**< Invalid key length. */
#define MBEDTLS_ERR_ARIA_INVALID_INPUT_LENGTH -0x005E /**< Invalid data input length. */
#define MBEDTLS_ERR_ARIA_FEATURE_UNAVAILABLE -0x005A /**< Feature not available. For example, an unsupported ARIA key size. */
#define MBEDTLS_ERR_ARIA_HW_ACCEL_FAILED -0x0058 /**< ARIA hardware accelerator failed. */
#if !defined(MBEDTLS_ARIA_ALT)
// Regular implementation
//
#ifdef __cplusplus
extern "C" {
#endif
/**
* \brief The ARIA context-type definition.
*/
typedef struct
{
unsigned char nr; /*!< The number of rounds (12, 14 or 16) */
/*! The ARIA round keys. */
uint32_t rk[MBEDTLS_ARIA_MAX_ROUNDS + 1][MBEDTLS_ARIA_BLOCKSIZE / 4];
}
mbedtls_aria_context;
#else /* MBEDTLS_ARIA_ALT */
#include "aria_alt.h"
#endif /* MBEDTLS_ARIA_ALT */
/**
* \brief This function initializes the specified ARIA context.
*
* It must be the first API called before using
* the context.
*
* \param ctx The ARIA context to initialize.
*/
void mbedtls_aria_init( mbedtls_aria_context *ctx );
/**
* \brief This function releases and clears the specified ARIA context.
*
* \param ctx The ARIA context to clear.
*/
void mbedtls_aria_free( mbedtls_aria_context *ctx );
/**
* \brief This function sets the encryption key.
*
* \param ctx The ARIA context to which the key should be bound.
* \param key The encryption key.
* \param keybits The size of data passed in bits. Valid options are:
* <ul><li>128 bits</li>
* <li>192 bits</li>
* <li>256 bits</li></ul>
*
* \return \c 0 on success or #MBEDTLS_ERR_ARIA_INVALID_KEY_LENGTH
* on failure.
*/
int mbedtls_aria_setkey_enc( mbedtls_aria_context *ctx,
const unsigned char *key,
unsigned int keybits );
/**
* \brief This function sets the decryption key.
*
* \param ctx The ARIA context to which the key should be bound.
* \param key The decryption key.
* \param keybits The size of data passed. Valid options are:
* <ul><li>128 bits</li>
* <li>192 bits</li>
* <li>256 bits</li></ul>
*
* \return \c 0 on success, or #MBEDTLS_ERR_ARIA_INVALID_KEY_LENGTH on failure.
*/
int mbedtls_aria_setkey_dec( mbedtls_aria_context *ctx,
const unsigned char *key,
unsigned int keybits );
/**
* \brief This function performs an ARIA single-block encryption or
* decryption operation.
*
* It performs encryption or decryption (depending on whether
* the key was set for encryption on decryption) on the input
* data buffer defined in the \p input parameter.
*
* mbedtls_aria_init(), and either mbedtls_aria_setkey_enc() or
* mbedtls_aria_setkey_dec() must be called before the first
* call to this API with the same context.
*
* \param ctx The ARIA context to use for encryption or decryption.
* \param input The 16-Byte buffer holding the input data.
* \param output The 16-Byte buffer holding the output data.
* \return \c 0 on success.
*/
int mbedtls_aria_crypt_ecb( mbedtls_aria_context *ctx,
const unsigned char input[MBEDTLS_ARIA_BLOCKSIZE],
unsigned char output[MBEDTLS_ARIA_BLOCKSIZE] );
#if defined(MBEDTLS_CIPHER_MODE_CBC)
/**
* \brief This function performs an ARIA-CBC encryption or decryption operation
* on full blocks.
*
* It performs the operation defined in the \p mode
* parameter (encrypt/decrypt), on the input data buffer defined in
* the \p input parameter.
*
* It can be called as many times as needed, until all the input
* data is processed. mbedtls_aria_init(), and either
* mbedtls_aria_setkey_enc() or mbedtls_aria_setkey_dec() must be called
* before the first call to this API with the same context.
*
* \note This function operates on aligned blocks, that is, the input size
* must be a multiple of the ARIA block size of 16 Bytes.
*
* \note Upon exit, the content of the IV is updated so that you can
* call the same function again on the next
* block(s) of data and get the same result as if it was
* encrypted in one call. This allows a "streaming" usage.
* If you need to retain the contents of the IV, you should
* either save it manually or use the cipher module instead.
*
*
* \param ctx The ARIA context to use for encryption or decryption.
* \param mode The ARIA operation: #MBEDTLS_ARIA_ENCRYPT or
* #MBEDTLS_ARIA_DECRYPT.
* \param length The length of the input data in Bytes. This must be a
* multiple of the block size (16 Bytes).
* \param iv Initialization vector (updated after use).
* \param input The buffer holding the input data.
* \param output The buffer holding the output data.
*
* \return \c 0 on success, or #MBEDTLS_ERR_ARIA_INVALID_INPUT_LENGTH
* on failure.
*/
int mbedtls_aria_crypt_cbc( mbedtls_aria_context *ctx,
int mode,
size_t length,
unsigned char iv[MBEDTLS_ARIA_BLOCKSIZE],
const unsigned char *input,
unsigned char *output );
#endif /* MBEDTLS_CIPHER_MODE_CBC */
#if defined(MBEDTLS_CIPHER_MODE_CFB)
/**
* \brief This function performs an ARIA-CFB128 encryption or decryption
* operation.
*
* It performs the operation defined in the \p mode
* parameter (encrypt or decrypt), on the input data buffer
* defined in the \p input parameter.
*
* For CFB, you must set up the context with mbedtls_aria_setkey_enc(),
* regardless of whether you are performing an encryption or decryption
* operation, that is, regardless of the \p mode parameter. This is
* because CFB mode uses the same key schedule for encryption and
* decryption.
*
* \note Upon exit, the content of the IV is updated so that you can
* call the same function again on the next
* block(s) of data and get the same result as if it was
* encrypted in one call. This allows a "streaming" usage.
* If you need to retain the contents of the
* IV, you must either save it manually or use the cipher
* module instead.
*
*
* \param ctx The ARIA context to use for encryption or decryption.
* \param mode The ARIA operation: #MBEDTLS_ARIA_ENCRYPT or
* #MBEDTLS_ARIA_DECRYPT.
* \param length The length of the input data.
* \param iv_off The offset in IV (updated after use).
* \param iv The initialization vector (updated after use).
* \param input The buffer holding the input data.
* \param output The buffer holding the output data.
*
* \return \c 0 on success.
*/
int mbedtls_aria_crypt_cfb128( mbedtls_aria_context *ctx,
int mode,
size_t length,
size_t *iv_off,
unsigned char iv[MBEDTLS_ARIA_BLOCKSIZE],
const unsigned char *input,
unsigned char *output );
#endif /* MBEDTLS_CIPHER_MODE_CFB */
#if defined(MBEDTLS_CIPHER_MODE_CTR)
/**
* \brief This function performs an ARIA-CTR encryption or decryption
* operation.
*
* This function performs the operation defined in the \p mode
* parameter (encrypt/decrypt), on the input data buffer
* defined in the \p input parameter.
*
* Due to the nature of CTR, you must use the same key schedule
* for both encryption and decryption operations. Therefore, you
* must use the context initialized with mbedtls_aria_setkey_enc()
* for both #MBEDTLS_ARIA_ENCRYPT and #MBEDTLS_ARIA_DECRYPT.
*
* \warning You must never reuse a nonce value with the same key. Doing so
* would void the encryption for the two messages encrypted with
* the same nonce and key.
*
* There are two common strategies for managing nonces with CTR:
*
* 1. You can handle everything as a single message processed over
* successive calls to this function. In that case, you want to
* set \p nonce_counter and \p nc_off to 0 for the first call, and
* then preserve the values of \p nonce_counter, \p nc_off and \p
* stream_block across calls to this function as they will be
* updated by this function.
*
* With this strategy, you must not encrypt more than 2**128
* blocks of data with the same key.
*
* 2. You can encrypt separate messages by dividing the \p
* nonce_counter buffer in two areas: the first one used for a
* per-message nonce, handled by yourself, and the second one
* updated by this function internally.
*
* For example, you might reserve the first 12 bytes for the
* per-message nonce, and the last 4 bytes for internal use. In that
* case, before calling this function on a new message you need to
* set the first 12 bytes of \p nonce_counter to your chosen nonce
* value, the last 4 to 0, and \p nc_off to 0 (which will cause \p
* stream_block to be ignored). That way, you can encrypt at most
* 2**96 messages of up to 2**32 blocks each with the same key.
*
* The per-message nonce (or information sufficient to reconstruct
* it) needs to be communicated with the ciphertext and must be unique.
* The recommended way to ensure uniqueness is to use a message
* counter. An alternative is to generate random nonces, but this
* limits the number of messages that can be securely encrypted:
* for example, with 96-bit random nonces, you should not encrypt
* more than 2**32 messages with the same key.
*
* Note that for both stategies, sizes are measured in blocks and
* that an ARIA block is 16 bytes.
*
* \warning Upon return, \p stream_block contains sensitive data. Its
* content must not be written to insecure storage and should be
* securely discarded as soon as it's no longer needed.
*
* \param ctx The ARIA context to use for encryption or decryption.
* \param length The length of the input data.
* \param nc_off The offset in the current \p stream_block, for
* resuming within the current cipher stream. The
* offset pointer should be 0 at the start of a stream.
* \param nonce_counter The 128-bit nonce and counter.
* \param stream_block The saved stream block for resuming. This is
* overwritten by the function.
* \param input The buffer holding the input data.
* \param output The buffer holding the output data.
*
* \return \c 0 on success.
*/
int mbedtls_aria_crypt_ctr( mbedtls_aria_context *ctx,
size_t length,
size_t *nc_off,
unsigned char nonce_counter[MBEDTLS_ARIA_BLOCKSIZE],
unsigned char stream_block[MBEDTLS_ARIA_BLOCKSIZE],
const unsigned char *input,
unsigned char *output );
#endif /* MBEDTLS_CIPHER_MODE_CTR */
#if defined(MBEDTLS_SELF_TEST)
/**
* \brief Checkup routine.
*
* \return \c 0 on success, or \c 1 on failure.
*/
int mbedtls_aria_self_test( int verbose );
#endif /* MBEDTLS_SELF_TEST */
#ifdef __cplusplus
}
#endif
#endif /* aria.h */

View file

@ -174,7 +174,46 @@ int mbedtls_blowfish_crypt_cfb64( mbedtls_blowfish_context *ctx,
/**
* \brief Blowfish-CTR buffer encryption/decryption
*
* Warning: You have to keep the maximum use of your counter in mind!
* \warning You must never reuse a nonce value with the same key. Doing so
* would void the encryption for the two messages encrypted with
* the same nonce and key.
*
* There are two common strategies for managing nonces with CTR:
*
* 1. You can handle everything as a single message processed over
* successive calls to this function. In that case, you want to
* set \p nonce_counter and \p nc_off to 0 for the first call, and
* then preserve the values of \p nonce_counter, \p nc_off and \p
* stream_block across calls to this function as they will be
* updated by this function.
*
* With this strategy, you must not encrypt more than 2**64
* blocks of data with the same key.
*
* 2. You can encrypt separate messages by dividing the \p
* nonce_counter buffer in two areas: the first one used for a
* per-message nonce, handled by yourself, and the second one
* updated by this function internally.
*
* For example, you might reserve the first 4 bytes for the
* per-message nonce, and the last 4 bytes for internal use. In that
* case, before calling this function on a new message you need to
* set the first 4 bytes of \p nonce_counter to your chosen nonce
* value, the last 4 to 0, and \p nc_off to 0 (which will cause \p
* stream_block to be ignored). That way, you can encrypt at most
* 2**32 messages of up to 2**32 blocks each with the same key.
*
* The per-message nonce (or information sufficient to reconstruct
* it) needs to be communicated with the ciphertext and must be unique.
* The recommended way to ensure uniqueness is to use a message
* counter.
*
* Note that for both stategies, sizes are measured in blocks and
* that a Blowfish block is 8 bytes.
*
* \warning Upon return, \p stream_block contains sensitive data. Its
* content must not be written to insecure storage and should be
* securely discarded as soon as it's no longer needed.
*
* \param ctx Blowfish context
* \param length The length of the data

View file

@ -187,12 +187,54 @@ int mbedtls_camellia_crypt_cfb128( mbedtls_camellia_context *ctx,
/**
* \brief CAMELLIA-CTR buffer encryption/decryption
*
* Warning: You have to keep the maximum use of your counter in mind!
*
* Note: Due to the nature of CTR you should use the same key schedule for
* both encryption and decryption. So a context initialized with
* mbedtls_camellia_setkey_enc() for both MBEDTLS_CAMELLIA_ENCRYPT and MBEDTLS_CAMELLIA_DECRYPT.
*
* \warning You must never reuse a nonce value with the same key. Doing so
* would void the encryption for the two messages encrypted with
* the same nonce and key.
*
* There are two common strategies for managing nonces with CTR:
*
* 1. You can handle everything as a single message processed over
* successive calls to this function. In that case, you want to
* set \p nonce_counter and \p nc_off to 0 for the first call, and
* then preserve the values of \p nonce_counter, \p nc_off and \p
* stream_block across calls to this function as they will be
* updated by this function.
*
* With this strategy, you must not encrypt more than 2**128
* blocks of data with the same key.
*
* 2. You can encrypt separate messages by dividing the \p
* nonce_counter buffer in two areas: the first one used for a
* per-message nonce, handled by yourself, and the second one
* updated by this function internally.
*
* For example, you might reserve the first 12 bytes for the
* per-message nonce, and the last 4 bytes for internal use. In that
* case, before calling this function on a new message you need to
* set the first 12 bytes of \p nonce_counter to your chosen nonce
* value, the last 4 to 0, and \p nc_off to 0 (which will cause \p
* stream_block to be ignored). That way, you can encrypt at most
* 2**96 messages of up to 2**32 blocks each with the same key.
*
* The per-message nonce (or information sufficient to reconstruct
* it) needs to be communicated with the ciphertext and must be unique.
* The recommended way to ensure uniqueness is to use a message
* counter. An alternative is to generate random nonces, but this
* limits the number of messages that can be securely encrypted:
* for example, with 96-bit random nonces, you should not encrypt
* more than 2**32 messages with the same key.
*
* Note that for both stategies, sizes are measured in blocks and
* that a CAMELLIA block is 16 bytes.
*
* \warning Upon return, \p stream_block contains sensitive data. Its
* content must not be written to insecure storage and should be
* securely discarded as soon as it's no longer needed.
*
* \param ctx CAMELLIA context
* \param length The length of the data
* \param nc_off The offset in the current stream_block (for resuming

View file

@ -86,6 +86,7 @@ typedef enum {
MBEDTLS_CIPHER_ID_CAMELLIA, /**< The Camellia cipher. */
MBEDTLS_CIPHER_ID_BLOWFISH, /**< The Blowfish cipher. */
MBEDTLS_CIPHER_ID_ARC4, /**< The RC4 cipher. */
MBEDTLS_CIPHER_ID_ARIA, /**< The Aria cipher. */
} mbedtls_cipher_id_t;
/**
@ -145,6 +146,24 @@ typedef enum {
MBEDTLS_CIPHER_CAMELLIA_128_CCM, /**< Camellia cipher with 128-bit CCM mode. */
MBEDTLS_CIPHER_CAMELLIA_192_CCM, /**< Camellia cipher with 192-bit CCM mode. */
MBEDTLS_CIPHER_CAMELLIA_256_CCM, /**< Camellia cipher with 256-bit CCM mode. */
MBEDTLS_CIPHER_ARIA_128_ECB, /**< Aria cipher with 128-bit key and ECB mode. */
MBEDTLS_CIPHER_ARIA_192_ECB, /**< Aria cipher with 192-bit key and ECB mode. */
MBEDTLS_CIPHER_ARIA_256_ECB, /**< Aria cipher with 256-bit key and ECB mode. */
MBEDTLS_CIPHER_ARIA_128_CBC, /**< Aria cipher with 128-bit key and CBC mode. */
MBEDTLS_CIPHER_ARIA_192_CBC, /**< Aria cipher with 192-bit key and CBC mode. */
MBEDTLS_CIPHER_ARIA_256_CBC, /**< Aria cipher with 256-bit key and CBC mode. */
MBEDTLS_CIPHER_ARIA_128_CFB128, /**< Aria cipher with 128-bit key and CFB-128 mode. */
MBEDTLS_CIPHER_ARIA_192_CFB128, /**< Aria cipher with 192-bit key and CFB-128 mode. */
MBEDTLS_CIPHER_ARIA_256_CFB128, /**< Aria cipher with 256-bit key and CFB-128 mode. */
MBEDTLS_CIPHER_ARIA_128_CTR, /**< Aria cipher with 128-bit key and CTR mode. */
MBEDTLS_CIPHER_ARIA_192_CTR, /**< Aria cipher with 192-bit key and CTR mode. */
MBEDTLS_CIPHER_ARIA_256_CTR, /**< Aria cipher with 256-bit key and CTR mode. */
MBEDTLS_CIPHER_ARIA_128_GCM, /**< Aria cipher with 128-bit key and GCM mode. */
MBEDTLS_CIPHER_ARIA_192_GCM, /**< Aria cipher with 192-bit key and GCM mode. */
MBEDTLS_CIPHER_ARIA_256_GCM, /**< Aria cipher with 256-bit key and GCM mode. */
MBEDTLS_CIPHER_ARIA_128_CCM, /**< Aria cipher with 128-bit key and CCM mode. */
MBEDTLS_CIPHER_ARIA_192_CCM, /**< Aria cipher with 192-bit key and CCM mode. */
MBEDTLS_CIPHER_ARIA_256_CCM, /**< Aria cipher with 256-bit key and CCM mode. */
} mbedtls_cipher_type_t;
/** Supported cipher modes. */

View file

@ -48,10 +48,14 @@
* Requires support for asm() in compiler.
*
* Used in:
* library/aria.c
* library/timing.c
* library/padlock.c
* include/mbedtls/bn_mul.h
*
* Required by:
* MBEDTLS_AESNI_C
* MBEDTLS_PADLOCK_C
*
* Comment to disable the use of assembly code.
*/
#define MBEDTLS_HAVE_ASM
@ -271,6 +275,7 @@
*/
//#define MBEDTLS_AES_ALT
//#define MBEDTLS_ARC4_ALT
//#define MBEDTLS_ARIA_ALT
//#define MBEDTLS_BLOWFISH_ALT
//#define MBEDTLS_CAMELLIA_ALT
//#define MBEDTLS_CCM_ALT
@ -288,6 +293,7 @@
//#define MBEDTLS_SHA256_ALT
//#define MBEDTLS_SHA512_ALT
//#define MBEDTLS_XTEA_ALT
/*
* When replacing the elliptic curve module, pleace consider, that it is
* implemented with two .c files:
@ -1617,7 +1623,7 @@
* Enable the AES block cipher.
*
* Module: library/aes.c
* Caller: library/ssl_tls.c
* Caller: library/cipher.c
* library/pem.c
* library/ctr_drbg.c
*
@ -1692,7 +1698,7 @@
* Enable the ARCFOUR stream cipher.
*
* Module: library/arc4.c
* Caller: library/ssl_tls.c
* Caller: library/cipher.c
*
* This module enables the following ciphersuites (if other requisites are
* enabled as well):
@ -1786,7 +1792,7 @@
* Enable the Camellia block cipher.
*
* Module: library/camellia.c
* Caller: library/ssl_tls.c
* Caller: library/cipher.c
*
* This module enables the following ciphersuites (if other requisites are
* enabled as well):
@ -1835,6 +1841,58 @@
*/
#define MBEDTLS_CAMELLIA_C
/**
* \def MBEDTLS_ARIA_C
*
* Enable the ARIA block cipher.
*
* Module: library/aria.c
* Caller: library/cipher.c
*
* This module enables the following ciphersuites (if other requisites are
* enabled as well):
*
* MBEDTLS_TLS_RSA_WITH_ARIA_128_CBC_SHA256
* MBEDTLS_TLS_RSA_WITH_ARIA_256_CBC_SHA384
* MBEDTLS_TLS_DHE_RSA_WITH_ARIA_128_CBC_SHA256
* MBEDTLS_TLS_DHE_RSA_WITH_ARIA_256_CBC_SHA384
* MBEDTLS_TLS_ECDHE_ECDSA_WITH_ARIA_128_CBC_SHA256
* MBEDTLS_TLS_ECDHE_ECDSA_WITH_ARIA_256_CBC_SHA384
* MBEDTLS_TLS_ECDH_ECDSA_WITH_ARIA_128_CBC_SHA256
* MBEDTLS_TLS_ECDH_ECDSA_WITH_ARIA_256_CBC_SHA384
* MBEDTLS_TLS_ECDHE_RSA_WITH_ARIA_128_CBC_SHA256
* MBEDTLS_TLS_ECDHE_RSA_WITH_ARIA_256_CBC_SHA384
* MBEDTLS_TLS_ECDH_RSA_WITH_ARIA_128_CBC_SHA256
* MBEDTLS_TLS_ECDH_RSA_WITH_ARIA_256_CBC_SHA384
* MBEDTLS_TLS_RSA_WITH_ARIA_128_GCM_SHA256
* MBEDTLS_TLS_RSA_WITH_ARIA_256_GCM_SHA384
* MBEDTLS_TLS_DHE_RSA_WITH_ARIA_128_GCM_SHA256
* MBEDTLS_TLS_DHE_RSA_WITH_ARIA_256_GCM_SHA384
* MBEDTLS_TLS_ECDHE_ECDSA_WITH_ARIA_128_GCM_SHA256
* MBEDTLS_TLS_ECDHE_ECDSA_WITH_ARIA_256_GCM_SHA384
* MBEDTLS_TLS_ECDH_ECDSA_WITH_ARIA_128_GCM_SHA256
* MBEDTLS_TLS_ECDH_ECDSA_WITH_ARIA_256_GCM_SHA384
* MBEDTLS_TLS_ECDHE_RSA_WITH_ARIA_128_GCM_SHA256
* MBEDTLS_TLS_ECDHE_RSA_WITH_ARIA_256_GCM_SHA384
* MBEDTLS_TLS_ECDH_RSA_WITH_ARIA_128_GCM_SHA256
* MBEDTLS_TLS_ECDH_RSA_WITH_ARIA_256_GCM_SHA384
* MBEDTLS_TLS_PSK_WITH_ARIA_128_CBC_SHA256
* MBEDTLS_TLS_PSK_WITH_ARIA_256_CBC_SHA384
* MBEDTLS_TLS_DHE_PSK_WITH_ARIA_128_CBC_SHA256
* MBEDTLS_TLS_DHE_PSK_WITH_ARIA_256_CBC_SHA384
* MBEDTLS_TLS_RSA_PSK_WITH_ARIA_128_CBC_SHA256
* MBEDTLS_TLS_RSA_PSK_WITH_ARIA_256_CBC_SHA384
* MBEDTLS_TLS_PSK_WITH_ARIA_128_GCM_SHA256
* MBEDTLS_TLS_PSK_WITH_ARIA_256_GCM_SHA384
* MBEDTLS_TLS_DHE_PSK_WITH_ARIA_128_GCM_SHA256
* MBEDTLS_TLS_DHE_PSK_WITH_ARIA_256_GCM_SHA384
* MBEDTLS_TLS_RSA_PSK_WITH_ARIA_128_GCM_SHA256
* MBEDTLS_TLS_RSA_PSK_WITH_ARIA_256_GCM_SHA384
* MBEDTLS_TLS_ECDHE_PSK_WITH_ARIA_128_CBC_SHA256
* MBEDTLS_TLS_ECDHE_PSK_WITH_ARIA_256_CBC_SHA384
*/
//#define MBEDTLS_ARIA_C
/**
* \def MBEDTLS_CCM_C
*
@ -1921,7 +1979,7 @@
*
* Module: library/des.c
* Caller: library/pem.c
* library/ssl_tls.c
* library/cipher.c
*
* This module enables the following ciphersuites (if other requisites are
* enabled as well):

View file

@ -63,6 +63,7 @@
* CTR_DBRG 4 0x0034-0x003A
* ENTROPY 3 0x003C-0x0040 0x003D-0x003F
* NET 11 0x0042-0x0052 0x0043-0x0045
* ARIA 4 0x0058-0x005E
* ASN1 7 0x0060-0x006C
* CMAC 1 0x007A-0x007A
* PBKDF2 1 0x007C-0x007C

View file

@ -169,6 +169,45 @@ extern "C" {
#define MBEDTLS_TLS_ECDHE_PSK_WITH_NULL_SHA256 0xC03A /**< Weak! No SSL3! */
#define MBEDTLS_TLS_ECDHE_PSK_WITH_NULL_SHA384 0xC03B /**< Weak! No SSL3! */
#define MBEDTLS_TLS_RSA_WITH_ARIA_128_CBC_SHA256 0xC03C /**< TLS 1.2 */
#define MBEDTLS_TLS_RSA_WITH_ARIA_256_CBC_SHA384 0xC03D /**< TLS 1.2 */
#define MBEDTLS_TLS_DHE_RSA_WITH_ARIA_128_CBC_SHA256 0xC044 /**< TLS 1.2 */
#define MBEDTLS_TLS_DHE_RSA_WITH_ARIA_256_CBC_SHA384 0xC045 /**< TLS 1.2 */
#define MBEDTLS_TLS_ECDHE_ECDSA_WITH_ARIA_128_CBC_SHA256 0xC048 /**< TLS 1.2 */
#define MBEDTLS_TLS_ECDHE_ECDSA_WITH_ARIA_256_CBC_SHA384 0xC049 /**< TLS 1.2 */
#define MBEDTLS_TLS_ECDH_ECDSA_WITH_ARIA_128_CBC_SHA256 0xC04A /**< TLS 1.2 */
#define MBEDTLS_TLS_ECDH_ECDSA_WITH_ARIA_256_CBC_SHA384 0xC04B /**< TLS 1.2 */
#define MBEDTLS_TLS_ECDHE_RSA_WITH_ARIA_128_CBC_SHA256 0xC04C /**< TLS 1.2 */
#define MBEDTLS_TLS_ECDHE_RSA_WITH_ARIA_256_CBC_SHA384 0xC04D /**< TLS 1.2 */
#define MBEDTLS_TLS_ECDH_RSA_WITH_ARIA_128_CBC_SHA256 0xC04E /**< TLS 1.2 */
#define MBEDTLS_TLS_ECDH_RSA_WITH_ARIA_256_CBC_SHA384 0xC04F /**< TLS 1.2 */
#define MBEDTLS_TLS_RSA_WITH_ARIA_128_GCM_SHA256 0xC050 /**< TLS 1.2 */
#define MBEDTLS_TLS_RSA_WITH_ARIA_256_GCM_SHA384 0xC051 /**< TLS 1.2 */
#define MBEDTLS_TLS_DHE_RSA_WITH_ARIA_128_GCM_SHA256 0xC052 /**< TLS 1.2 */
#define MBEDTLS_TLS_DHE_RSA_WITH_ARIA_256_GCM_SHA384 0xC053 /**< TLS 1.2 */
#define MBEDTLS_TLS_ECDHE_ECDSA_WITH_ARIA_128_GCM_SHA256 0xC05C /**< TLS 1.2 */
#define MBEDTLS_TLS_ECDHE_ECDSA_WITH_ARIA_256_GCM_SHA384 0xC05D /**< TLS 1.2 */
#define MBEDTLS_TLS_ECDH_ECDSA_WITH_ARIA_128_GCM_SHA256 0xC05E /**< TLS 1.2 */
#define MBEDTLS_TLS_ECDH_ECDSA_WITH_ARIA_256_GCM_SHA384 0xC05F /**< TLS 1.2 */
#define MBEDTLS_TLS_ECDHE_RSA_WITH_ARIA_128_GCM_SHA256 0xC060 /**< TLS 1.2 */
#define MBEDTLS_TLS_ECDHE_RSA_WITH_ARIA_256_GCM_SHA384 0xC061 /**< TLS 1.2 */
#define MBEDTLS_TLS_ECDH_RSA_WITH_ARIA_128_GCM_SHA256 0xC062 /**< TLS 1.2 */
#define MBEDTLS_TLS_ECDH_RSA_WITH_ARIA_256_GCM_SHA384 0xC063 /**< TLS 1.2 */
#define MBEDTLS_TLS_PSK_WITH_ARIA_128_CBC_SHA256 0xC064 /**< TLS 1.2 */
#define MBEDTLS_TLS_PSK_WITH_ARIA_256_CBC_SHA384 0xC065 /**< TLS 1.2 */
#define MBEDTLS_TLS_DHE_PSK_WITH_ARIA_128_CBC_SHA256 0xC066 /**< TLS 1.2 */
#define MBEDTLS_TLS_DHE_PSK_WITH_ARIA_256_CBC_SHA384 0xC067 /**< TLS 1.2 */
#define MBEDTLS_TLS_RSA_PSK_WITH_ARIA_128_CBC_SHA256 0xC068 /**< TLS 1.2 */
#define MBEDTLS_TLS_RSA_PSK_WITH_ARIA_256_CBC_SHA384 0xC069 /**< TLS 1.2 */
#define MBEDTLS_TLS_PSK_WITH_ARIA_128_GCM_SHA256 0xC06A /**< TLS 1.2 */
#define MBEDTLS_TLS_PSK_WITH_ARIA_256_GCM_SHA384 0xC06B /**< TLS 1.2 */
#define MBEDTLS_TLS_DHE_PSK_WITH_ARIA_128_GCM_SHA256 0xC06C /**< TLS 1.2 */
#define MBEDTLS_TLS_DHE_PSK_WITH_ARIA_256_GCM_SHA384 0xC06D /**< TLS 1.2 */
#define MBEDTLS_TLS_RSA_PSK_WITH_ARIA_128_GCM_SHA256 0xC06E /**< TLS 1.2 */
#define MBEDTLS_TLS_RSA_PSK_WITH_ARIA_256_GCM_SHA384 0xC06F /**< TLS 1.2 */
#define MBEDTLS_TLS_ECDHE_PSK_WITH_ARIA_128_CBC_SHA256 0xC070 /**< TLS 1.2 */
#define MBEDTLS_TLS_ECDHE_PSK_WITH_ARIA_256_CBC_SHA384 0xC071 /**< TLS 1.2 */
#define MBEDTLS_TLS_ECDHE_ECDSA_WITH_CAMELLIA_128_CBC_SHA256 0xC072 /**< Not in SSL3! */
#define MBEDTLS_TLS_ECDHE_ECDSA_WITH_CAMELLIA_256_CBC_SHA384 0xC073 /**< Not in SSL3! */
#define MBEDTLS_TLS_ECDH_ECDSA_WITH_CAMELLIA_128_CBC_SHA256 0xC074 /**< Not in SSL3! */