Rename M255 to Curve25519

This commit is contained in:
Manuel Pégourié-Gonnard 2015-06-23 00:18:41 +02:00
parent 7320eb46d4
commit 07894338a0
10 changed files with 52 additions and 52 deletions

View file

@ -159,8 +159,8 @@
#if defined MBEDTLS_ECP_DP_BP512R1_ENABLED
#define POLARSSL_ECP_DP_BP512R1_ENABLED MBEDTLS_ECP_DP_BP512R1_ENABLED
#endif
#if defined MBEDTLS_ECP_DP_M255_ENABLED
#define POLARSSL_ECP_DP_M255_ENABLED MBEDTLS_ECP_DP_M255_ENABLED
#if defined MBEDTLS_ECP_DP_CURVE25519_ENABLED
#define POLARSSL_ECP_DP_M255_ENABLED MBEDTLS_ECP_DP_CURVE25519_ENABLED
#endif
#if defined MBEDTLS_ECP_DP_SECP192K1_ENABLED
#define POLARSSL_ECP_DP_SECP192K1_ENABLED MBEDTLS_ECP_DP_SECP192K1_ENABLED
@ -1042,7 +1042,7 @@
#define POLARSSL_ECP_DP_BP256R1 MBEDTLS_ECP_DP_BP256R1
#define POLARSSL_ECP_DP_BP384R1 MBEDTLS_ECP_DP_BP384R1
#define POLARSSL_ECP_DP_BP512R1 MBEDTLS_ECP_DP_BP512R1
#define POLARSSL_ECP_DP_M255 MBEDTLS_ECP_DP_M255
#define POLARSSL_ECP_DP_M255 MBEDTLS_ECP_DP_CURVE25519
#define POLARSSL_ECP_DP_MAX MBEDTLS_ECP_DP_MAX
#define POLARSSL_ECP_DP_NONE MBEDTLS_ECP_DP_NONE
#define POLARSSL_ECP_DP_SECP192K1 MBEDTLS_ECP_DP_SECP192K1

View file

@ -421,7 +421,7 @@
#define MBEDTLS_ECP_DP_BP256R1_ENABLED
#define MBEDTLS_ECP_DP_BP384R1_ENABLED
#define MBEDTLS_ECP_DP_BP512R1_ENABLED
#define MBEDTLS_ECP_DP_M255_ENABLED
#define MBEDTLS_ECP_DP_CURVE25519_ENABLED
/**
* \def MBEDTLS_ECP_NIST_OPTIM

View file

@ -62,7 +62,7 @@ typedef enum
MBEDTLS_ECP_DP_BP256R1, /*!< 256-bits Brainpool curve */
MBEDTLS_ECP_DP_BP384R1, /*!< 384-bits Brainpool curve */
MBEDTLS_ECP_DP_BP512R1, /*!< 512-bits Brainpool curve */
MBEDTLS_ECP_DP_M255, /*!< Curve25519 */
MBEDTLS_ECP_DP_CURVE25519, /*!< Curve25519 */
MBEDTLS_ECP_DP_SECP192K1, /*!< 192-bits "Koblitz" curve */
MBEDTLS_ECP_DP_SECP224K1, /*!< 224-bits "Koblitz" curve */
MBEDTLS_ECP_DP_SECP256K1, /*!< 256-bits "Koblitz" curve */
@ -108,7 +108,7 @@ mbedtls_ecp_point;
*
* We consider two types of curves equations:
* 1. Short Weierstrass y^2 = x^3 + A x + B mod P (SEC1 + RFC 4492)
* 2. Montgomery, y^2 = x^3 + A x^2 + x mod P (M255 + draft)
* 2. Montgomery, y^2 = x^3 + A x^2 + x mod P (Curve25519 + draft)
* In both cases, a generator G for a prime-order subgroup is fixed. In the
* short weierstrass, this subgroup is actually the whole curve, and its
* cardinal is denoted by N.