General: Recover Prometheus project from harddrive failure
This commit: Implements CPU Interrupts, Replaces Cycle Timing for Host Timing, Reworks the Kernel's Scheduler, Introduce Idle State and Suspended State, Recreates the bootmanager, Initializes Multicore system.
This commit is contained in:
parent
a83f0b607e
commit
7ee76003ad
57 changed files with 1349 additions and 824 deletions
|
@ -16,31 +16,30 @@
|
|||
|
||||
namespace {
|
||||
// Numbers are chosen randomly to make sure the correct one is given.
|
||||
constexpr std::array<u64, 5> CB_IDS{{42, 144, 93, 1026, UINT64_C(0xFFFF7FFFF7FFFF)}};
|
||||
constexpr int MAX_SLICE_LENGTH = 10000; // Copied from CoreTiming internals
|
||||
static constexpr std::array<u64, 5> CB_IDS{{42, 144, 93, 1026, UINT64_C(0xFFFF7FFFF7FFFF)}};
|
||||
static constexpr int MAX_SLICE_LENGTH = 10000; // Copied from CoreTiming internals
|
||||
static constexpr std::array<u64, 5> calls_order{{2, 0, 1, 4, 3}};
|
||||
static std::array<s64, 5> delays{};
|
||||
|
||||
std::bitset<CB_IDS.size()> callbacks_ran_flags;
|
||||
u64 expected_callback = 0;
|
||||
s64 lateness = 0;
|
||||
|
||||
template <unsigned int IDX>
|
||||
void CallbackTemplate(u64 userdata, s64 cycles_late) {
|
||||
void HostCallbackTemplate(u64 userdata, s64 nanoseconds_late) {
|
||||
static_assert(IDX < CB_IDS.size(), "IDX out of range");
|
||||
callbacks_ran_flags.set(IDX);
|
||||
REQUIRE(CB_IDS[IDX] == userdata);
|
||||
REQUIRE(CB_IDS[IDX] == expected_callback);
|
||||
REQUIRE(lateness == cycles_late);
|
||||
REQUIRE(CB_IDS[IDX] == CB_IDS[calls_order[expected_callback]]);
|
||||
delays[IDX] = nanoseconds_late;
|
||||
++expected_callback;
|
||||
}
|
||||
|
||||
u64 callbacks_done = 0;
|
||||
|
||||
void EmptyCallback(u64 userdata, s64 cycles_late) {
|
||||
++callbacks_done;
|
||||
}
|
||||
|
||||
struct ScopeInit final {
|
||||
ScopeInit() {
|
||||
core_timing.Initialize();
|
||||
core_timing.Initialize([]() {});
|
||||
}
|
||||
~ScopeInit() {
|
||||
core_timing.Shutdown();
|
||||
|
@ -49,110 +48,97 @@ struct ScopeInit final {
|
|||
Core::Timing::CoreTiming core_timing;
|
||||
};
|
||||
|
||||
void AdvanceAndCheck(Core::Timing::CoreTiming& core_timing, u32 idx, u32 context = 0,
|
||||
int expected_lateness = 0, int cpu_downcount = 0) {
|
||||
callbacks_ran_flags = 0;
|
||||
expected_callback = CB_IDS[idx];
|
||||
lateness = expected_lateness;
|
||||
|
||||
// Pretend we executed X cycles of instructions.
|
||||
core_timing.SwitchContext(context);
|
||||
core_timing.AddTicks(core_timing.GetDowncount() - cpu_downcount);
|
||||
core_timing.Advance();
|
||||
core_timing.SwitchContext((context + 1) % 4);
|
||||
|
||||
REQUIRE(decltype(callbacks_ran_flags)().set(idx) == callbacks_ran_flags);
|
||||
}
|
||||
} // Anonymous namespace
|
||||
|
||||
TEST_CASE("CoreTiming[BasicOrder]", "[core]") {
|
||||
ScopeInit guard;
|
||||
auto& core_timing = guard.core_timing;
|
||||
std::vector<std::shared_ptr<Core::Timing::EventType>> events{
|
||||
Core::Timing::CreateEvent("callbackA", HostCallbackTemplate<0>),
|
||||
Core::Timing::CreateEvent("callbackB", HostCallbackTemplate<1>),
|
||||
Core::Timing::CreateEvent("callbackC", HostCallbackTemplate<2>),
|
||||
Core::Timing::CreateEvent("callbackD", HostCallbackTemplate<3>),
|
||||
Core::Timing::CreateEvent("callbackE", HostCallbackTemplate<4>),
|
||||
};
|
||||
|
||||
std::shared_ptr<Core::Timing::EventType> cb_a =
|
||||
Core::Timing::CreateEvent("callbackA", CallbackTemplate<0>);
|
||||
std::shared_ptr<Core::Timing::EventType> cb_b =
|
||||
Core::Timing::CreateEvent("callbackB", CallbackTemplate<1>);
|
||||
std::shared_ptr<Core::Timing::EventType> cb_c =
|
||||
Core::Timing::CreateEvent("callbackC", CallbackTemplate<2>);
|
||||
std::shared_ptr<Core::Timing::EventType> cb_d =
|
||||
Core::Timing::CreateEvent("callbackD", CallbackTemplate<3>);
|
||||
std::shared_ptr<Core::Timing::EventType> cb_e =
|
||||
Core::Timing::CreateEvent("callbackE", CallbackTemplate<4>);
|
||||
expected_callback = 0;
|
||||
|
||||
// Enter slice 0
|
||||
core_timing.ResetRun();
|
||||
core_timing.SyncPause(true);
|
||||
|
||||
// D -> B -> C -> A -> E
|
||||
core_timing.SwitchContext(0);
|
||||
core_timing.ScheduleEvent(1000, cb_a, CB_IDS[0]);
|
||||
REQUIRE(1000 == core_timing.GetDowncount());
|
||||
core_timing.ScheduleEvent(500, cb_b, CB_IDS[1]);
|
||||
REQUIRE(500 == core_timing.GetDowncount());
|
||||
core_timing.ScheduleEvent(800, cb_c, CB_IDS[2]);
|
||||
REQUIRE(500 == core_timing.GetDowncount());
|
||||
core_timing.ScheduleEvent(100, cb_d, CB_IDS[3]);
|
||||
REQUIRE(100 == core_timing.GetDowncount());
|
||||
core_timing.ScheduleEvent(1200, cb_e, CB_IDS[4]);
|
||||
REQUIRE(100 == core_timing.GetDowncount());
|
||||
u64 one_micro = 1000U;
|
||||
for (std::size_t i = 0; i < events.size(); i++) {
|
||||
u64 order = calls_order[i];
|
||||
core_timing.ScheduleEvent(i * one_micro + 100U, events[order], CB_IDS[order]);
|
||||
}
|
||||
/// test pause
|
||||
REQUIRE(callbacks_ran_flags.none());
|
||||
|
||||
AdvanceAndCheck(core_timing, 3, 0);
|
||||
AdvanceAndCheck(core_timing, 1, 1);
|
||||
AdvanceAndCheck(core_timing, 2, 2);
|
||||
AdvanceAndCheck(core_timing, 0, 3);
|
||||
AdvanceAndCheck(core_timing, 4, 0);
|
||||
core_timing.Pause(false); // No need to sync
|
||||
|
||||
while (core_timing.HasPendingEvents())
|
||||
;
|
||||
|
||||
REQUIRE(callbacks_ran_flags.all());
|
||||
|
||||
for (std::size_t i = 0; i < delays.size(); i++) {
|
||||
const double delay = static_cast<double>(delays[i]);
|
||||
const double micro = delay / 1000.0f;
|
||||
const double mili = micro / 1000.0f;
|
||||
printf("HostTimer Pausing Delay[%zu]: %.3f %.6f\n", i, micro, mili);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_CASE("CoreTiming[FairSharing]", "[core]") {
|
||||
#pragma optimize("", off)
|
||||
u64 TestTimerSpeed(Core::Timing::CoreTiming& core_timing) {
|
||||
u64 start = core_timing.GetGlobalTimeNs().count();
|
||||
u64 placebo = 0;
|
||||
for (std::size_t i = 0; i < 1000; i++) {
|
||||
placebo += core_timing.GetGlobalTimeNs().count();
|
||||
}
|
||||
u64 end = core_timing.GetGlobalTimeNs().count();
|
||||
return (end - start);
|
||||
}
|
||||
#pragma optimize("", on)
|
||||
|
||||
TEST_CASE("CoreTiming[BasicOrderNoPausing]", "[core]") {
|
||||
ScopeInit guard;
|
||||
auto& core_timing = guard.core_timing;
|
||||
std::vector<std::shared_ptr<Core::Timing::EventType>> events{
|
||||
Core::Timing::CreateEvent("callbackA", HostCallbackTemplate<0>),
|
||||
Core::Timing::CreateEvent("callbackB", HostCallbackTemplate<1>),
|
||||
Core::Timing::CreateEvent("callbackC", HostCallbackTemplate<2>),
|
||||
Core::Timing::CreateEvent("callbackD", HostCallbackTemplate<3>),
|
||||
Core::Timing::CreateEvent("callbackE", HostCallbackTemplate<4>),
|
||||
};
|
||||
|
||||
std::shared_ptr<Core::Timing::EventType> empty_callback =
|
||||
Core::Timing::CreateEvent("empty_callback", EmptyCallback);
|
||||
core_timing.SyncPause(true);
|
||||
core_timing.SyncPause(false);
|
||||
|
||||
callbacks_done = 0;
|
||||
u64 MAX_CALLBACKS = 10;
|
||||
for (std::size_t i = 0; i < 10; i++) {
|
||||
core_timing.ScheduleEvent(i * 3333U, empty_callback, 0);
|
||||
expected_callback = 0;
|
||||
|
||||
u64 start = core_timing.GetGlobalTimeNs().count();
|
||||
u64 one_micro = 1000U;
|
||||
for (std::size_t i = 0; i < events.size(); i++) {
|
||||
u64 order = calls_order[i];
|
||||
core_timing.ScheduleEvent(i * one_micro + 100U, events[order], CB_IDS[order]);
|
||||
}
|
||||
u64 end = core_timing.GetGlobalTimeNs().count();
|
||||
const double scheduling_time = static_cast<double>(end - start);
|
||||
const double timer_time = static_cast<double>(TestTimerSpeed(core_timing));
|
||||
|
||||
while (core_timing.HasPendingEvents())
|
||||
;
|
||||
|
||||
REQUIRE(callbacks_ran_flags.all());
|
||||
|
||||
for (std::size_t i = 0; i < delays.size(); i++) {
|
||||
const double delay = static_cast<double>(delays[i]);
|
||||
const double micro = delay / 1000.0f;
|
||||
const double mili = micro / 1000.0f;
|
||||
printf("HostTimer No Pausing Delay[%zu]: %.3f %.6f\n", i, micro, mili);
|
||||
}
|
||||
|
||||
const s64 advances = MAX_SLICE_LENGTH / 10;
|
||||
core_timing.ResetRun();
|
||||
u64 current_time = core_timing.GetTicks();
|
||||
bool keep_running{};
|
||||
do {
|
||||
keep_running = false;
|
||||
for (u32 active_core = 0; active_core < 4; ++active_core) {
|
||||
core_timing.SwitchContext(active_core);
|
||||
if (core_timing.CanCurrentContextRun()) {
|
||||
core_timing.AddTicks(std::min<s64>(advances, core_timing.GetDowncount()));
|
||||
core_timing.Advance();
|
||||
}
|
||||
keep_running |= core_timing.CanCurrentContextRun();
|
||||
}
|
||||
} while (keep_running);
|
||||
u64 current_time_2 = core_timing.GetTicks();
|
||||
|
||||
REQUIRE(MAX_CALLBACKS == callbacks_done);
|
||||
REQUIRE(current_time_2 == current_time + MAX_SLICE_LENGTH * 4);
|
||||
}
|
||||
|
||||
TEST_CASE("Core::Timing[PredictableLateness]", "[core]") {
|
||||
ScopeInit guard;
|
||||
auto& core_timing = guard.core_timing;
|
||||
|
||||
std::shared_ptr<Core::Timing::EventType> cb_a =
|
||||
Core::Timing::CreateEvent("callbackA", CallbackTemplate<0>);
|
||||
std::shared_ptr<Core::Timing::EventType> cb_b =
|
||||
Core::Timing::CreateEvent("callbackB", CallbackTemplate<1>);
|
||||
|
||||
// Enter slice 0
|
||||
core_timing.ResetRun();
|
||||
|
||||
core_timing.ScheduleEvent(100, cb_a, CB_IDS[0]);
|
||||
core_timing.ScheduleEvent(200, cb_b, CB_IDS[1]);
|
||||
|
||||
AdvanceAndCheck(core_timing, 0, 0, 10, -10); // (100 - 10)
|
||||
AdvanceAndCheck(core_timing, 1, 1, 50, -50);
|
||||
const double micro = scheduling_time / 1000.0f;
|
||||
const double mili = micro / 1000.0f;
|
||||
printf("HostTimer No Pausing Scheduling Time: %.3f %.6f\n", micro, mili);
|
||||
printf("HostTimer No Pausing Timer Time: %.3f %.6f\n", timer_time / 1000.f,
|
||||
timer_time / 1000000.f);
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue