cpp-jwt/include/jwt/impl/algorithm.ipp

439 lines
11 KiB
C++

#ifndef CPP_JWT_ALGORITHM_IPP
#define CPP_JWT_ALGORITHM_IPP
#include <iostream>
namespace jwt {
template <typename Hasher>
verify_result_t HMACSign<Hasher>::verify(
const string_view key,
const string_view head,
const string_view jwt_sign)
{
std::error_code ec{};
std::cout << "Key: " << key << std::endl;
std::cout << "Head: " << head << std::endl;
std::cout << "JWT: " << jwt_sign << std::endl;
BIO_uptr b64{BIO_new(BIO_f_base64()), bio_deletor};
if (!b64) {
throw MemoryAllocationException("BIO_new failed");
}
BIO* bmem = BIO_new(BIO_s_mem());
if (!bmem) {
throw MemoryAllocationException("BIO_new failed");
}
BIO_push(b64.get(), bmem);
BIO_set_flags(b64.get(), BIO_FLAGS_BASE64_NO_NL);
unsigned char enc_buf[EVP_MAX_MD_SIZE];
uint32_t enc_buf_len = 0;
unsigned char* res = HMAC(Hasher{}(),
key.data(),
key.length(),
reinterpret_cast<const unsigned char*>(head.data()),
head.length(),
enc_buf,
&enc_buf_len);
if (!res) {
ec = AlgorithmErrc::VerificationErr;
return {false, ec};
}
BIO_write(b64.get(), enc_buf, enc_buf_len);
(void)BIO_flush(b64.get());
int len = BIO_pending(bmem);
if (len < 0) {
ec = AlgorithmErrc::VerificationErr;
return {false, ec};
}
std::string cbuf;
cbuf.resize(len + 1);
len = BIO_read(bmem, &cbuf[0], len);
cbuf.resize(len);
//Make the base64 string url safe
auto new_len = jwt::base64_uri_encode(&cbuf[0], cbuf.length());
cbuf.resize(new_len);
std::cout << "cbuf: " << cbuf << std::endl;
bool ret = (string_view{cbuf} == jwt_sign);
return { ret, ec };
}
template <typename Hasher>
verify_result_t PEMSign<Hasher>::verify(
const string_view key,
const string_view head,
const string_view jwt_sign)
{
std::error_code ec{};
std::string dec_sig = base64_uri_decode(jwt_sign.data(), jwt_sign.length());
BIO_uptr bufkey{
BIO_new_mem_buf((void*)key.data(), key.length()),
bio_deletor};
if (!bufkey) {
throw MemoryAllocationException("BIO_new_mem_buf failed");
}
EC_PKEY_uptr pkey{
PEM_read_bio_PUBKEY(bufkey.get(), nullptr, nullptr, nullptr),
ev_pkey_deletor};
if (!pkey) {
ec = AlgorithmErrc::VerificationErr;
return { false, ec };
}
int pkey_type = EVP_PKEY_id(pkey.get());
if (pkey_type != Hasher::type) {
ec = AlgorithmErrc::VerificationErr;
return { false, ec };
}
//Convert EC signature back to ASN1
if (Hasher::type == EVP_PKEY_EC) {
EC_SIG_uptr ec_sig{ECDSA_SIG_new(), ec_sig_deletor};
if (!ec_sig) {
throw MemoryAllocationException("ECDSA_SIG_new failed");
}
//Get the actual ec_key
EC_KEY_uptr ec_key{EVP_PKEY_get1_EC_KEY(pkey.get()), ec_key_deletor};
if (!ec_key) {
throw MemoryAllocationException("EVP_PKEY_get1_EC_KEY failed");
}
unsigned int degree = EC_GROUP_get_degree(
EC_KEY_get0_group(ec_key.get()));
unsigned int bn_len = (degree + 7) / 8;
if ((bn_len * 2) != dec_sig.length()) {
ec = AlgorithmErrc::VerificationErr;
return { false, ec };
}
BIGNUM* ec_sig_r = BN_bin2bn((unsigned char*)dec_sig.data(), bn_len, nullptr);
BIGNUM* ec_sig_s = BN_bin2bn((unsigned char*)dec_sig.data() + bn_len, bn_len, nullptr);
if (!ec_sig_r || !ec_sig_s) {
ec = AlgorithmErrc::VerificationErr;
return { false, ec };
}
ECDSA_SIG_set0(ec_sig.get(), ec_sig_r, ec_sig_s);
size_t nlen = i2d_ECDSA_SIG(ec_sig.get(), nullptr);
dec_sig.resize(nlen);
auto data = reinterpret_cast<unsigned char*>(&dec_sig[0]);
nlen = i2d_ECDSA_SIG(ec_sig.get(), &data);
if (nlen == 0) {
ec = AlgorithmErrc::VerificationErr;
return { false, ec };
}
}
EVP_MDCTX_uptr mdctx_ptr{EVP_MD_CTX_create(), evp_md_ctx_deletor};
if (!mdctx_ptr) {
throw MemoryAllocationException("EVP_MD_CTX_create failed");
}
if (EVP_DigestVerifyInit(
mdctx_ptr.get(), nullptr, Hasher{}(), nullptr, pkey.get()) != 1) {
ec = AlgorithmErrc::VerificationErr;
return { false, ec };
}
if (EVP_DigestVerifyUpdate(mdctx_ptr.get(), head.data(), head.length()) != 1) {
ec = AlgorithmErrc::VerificationErr;
return { false, ec };
}
if (EVP_DigestVerifyFinal(
mdctx_ptr.get(), (unsigned char*)&dec_sig[0], dec_sig.length()) != 1) {
ec = AlgorithmErrc::VerificationErr;
return { false, ec };
}
return { true, ec };
}
///////////////////////
#define SIGN_ERROR(__err) ({ ret = __err; goto jwt_sign_sha_pem_done; })
template <typename Hasher>
void PEMSign<Hasher>::libjwt_sign(char** out, unsigned int *len, const char* str, const char* key, size_t klen)
{
ECDSA_SIG *ec_sig = NULL;
const BIGNUM *ec_sig_r = NULL;
const BIGNUM *ec_sig_s = NULL;
const EVP_MD *alg;
int type;
EVP_PKEY *pkey = NULL;
int pkey_type;
unsigned char *sig;
int ret = 0;
size_t slen;
alg = EVP_sha256();
type = EVP_PKEY_EC;
BIO_uptr bufkey{
BIO_new_mem_buf(key, klen),
bio_deletor};
if (!bufkey) {
throw MemoryAllocationException("BIO_new_mem_buf failed");
}
pkey = PEM_read_bio_PrivateKey(bufkey.get(), NULL, NULL, NULL);
if (!pkey) {
return;
}
pkey_type = EVP_PKEY_id(pkey);
if (pkey_type != type) {
return;
}
EVP_MDCTX_uptr mdctx{EVP_MD_CTX_create(), evp_md_ctx_deletor};
if (!mdctx) return;
EVP_DigestSignInit(mdctx.get(), NULL, alg, NULL, pkey);
EVP_DigestSignUpdate(mdctx.get(), str, strlen(str));
EVP_DigestSignFinal(mdctx.get(), NULL, &slen);
sig = (unsigned char*)alloca(slen);
EVP_DigestSignFinal(mdctx.get(), sig, &slen);
if (pkey_type != EVP_PKEY_EC) {
*out = (char*)malloc(slen);
if (*out == NULL)
SIGN_ERROR(ENOMEM);
memcpy(*out, sig, slen);
*len = slen;
} else {
unsigned int degree, bn_len, r_len, s_len, buf_len;
unsigned char *raw_buf;
EC_KEY *ec_key;
/* For EC we need to convert to a raw format of R/S. */
/* Get the actual ec_key */
ec_key = EVP_PKEY_get1_EC_KEY(pkey);
if (ec_key == NULL)
SIGN_ERROR(ENOMEM);
degree = EC_GROUP_get_degree(EC_KEY_get0_group(ec_key));
EC_KEY_free(ec_key);
std::cout << "AAA: " << sig << std::endl;
/* Get the sig from the DER encoded version. */
ec_sig = d2i_ECDSA_SIG(NULL, (const unsigned char **)&sig, slen);
if (ec_sig == NULL)
SIGN_ERROR(ENOMEM);
std::cout << "ON YOUR FACE!!" << std::endl;
ECDSA_SIG_get0(ec_sig, &ec_sig_r, &ec_sig_s);
r_len = BN_num_bytes(ec_sig_r);
s_len = BN_num_bytes(ec_sig_s);
bn_len = (degree + 7) / 8;
if ((r_len > bn_len) || (s_len > bn_len))
SIGN_ERROR(EINVAL);
buf_len = 2 * bn_len;
raw_buf = (unsigned char*)alloca(buf_len);
if (raw_buf == NULL)
SIGN_ERROR(ENOMEM);
/* Pad the bignums with leading zeroes. */
memset(raw_buf, 0, buf_len);
BN_bn2bin(ec_sig_r, raw_buf + bn_len - r_len);
BN_bn2bin(ec_sig_s, raw_buf + buf_len - s_len);
*out = (char*)malloc(buf_len);
if (*out == NULL)
SIGN_ERROR(ENOMEM);
memcpy(*out, raw_buf, buf_len);
*len = buf_len;
}
jwt_sign_sha_pem_done:
if (pkey)
EVP_PKEY_free(pkey);
if (ec_sig)
ECDSA_SIG_free(ec_sig);
return;
}
//////////////////////
template <typename Hasher>
EVP_PKEY* PEMSign<Hasher>::load_key(
const string_view key,
std::error_code& ec)
{
ec.clear();
BIO_uptr bio_ptr{
BIO_new_mem_buf((void*)key.data(), key.length()),
bio_deletor};
if (!bio_ptr) {
throw MemoryAllocationException("BIO_new_mem_buf failed");
}
EVP_PKEY* pkey = PEM_read_bio_PrivateKey(
bio_ptr.get(), nullptr, nullptr, nullptr);
if (!pkey) {
ec = AlgorithmErrc::SigningErr;
return nullptr;
}
auto pkey_type = EVP_PKEY_id(pkey);
if (pkey_type != Hasher::type) {
ec = AlgorithmErrc::SigningErr;
return nullptr;
}
return pkey;
}
template <typename Hasher>
std::string PEMSign<Hasher>::evp_digest(
EVP_PKEY* pkey,
const string_view data,
std::error_code& ec)
{
ec.clear();
EVP_MDCTX_uptr mdctx_ptr{EVP_MD_CTX_create(), evp_md_ctx_deletor};
std::cout << data << std::endl;
std::cout << data.length() << std::endl;
if (!mdctx_ptr) {
throw MemoryAllocationException("EVP_MD_CTX_create failed");
}
//Initialiaze the digest algorithm
if (EVP_DigestSignInit(
mdctx_ptr.get(), nullptr, Hasher{}(), nullptr, pkey) != 1) {
ec = AlgorithmErrc::SigningErr;
return {};
}
//Update the digest with the input data
if (EVP_DigestSignUpdate(mdctx_ptr.get(), data.data(), data.length()) != 1) {
ec = AlgorithmErrc::SigningErr;
return {};
}
unsigned long len = 0;
if (EVP_DigestSignFinal(mdctx_ptr.get(), nullptr, &len) != 1) {
ec = AlgorithmErrc::SigningErr;
return {};
}
std::string sign;
sign.resize(len);
//Get the signature
if (EVP_DigestSignFinal(mdctx_ptr.get(), (unsigned char*)&sign[0], &len) != 1) {
ec = AlgorithmErrc::SigningErr;
return {};
}
return sign;
}
template <typename Hasher>
std::string PEMSign<Hasher>::public_key_ser(
EVP_PKEY* pkey,
string_view sign,
std::error_code& ec)
{
// Get the EC_KEY representing a public key and
// (optionaly) an associated private key
std::string new_sign;
ec.clear();
EC_KEY_uptr ec_key{EVP_PKEY_get1_EC_KEY(pkey), ec_key_deletor};
if (!ec_key) {
ec = AlgorithmErrc::SigningErr;
return {};
}
uint32_t degree = EC_GROUP_get_degree(EC_KEY_get0_group(ec_key.get()));
ec_key.reset(nullptr);
auto char_ptr = &sign[0];
std::cout << "AAA: " << char_ptr << std::endl;
EC_SIG_uptr ec_sig{d2i_ECDSA_SIG(nullptr,
(const unsigned char**)&char_ptr,
sign.length()),
ec_sig_deletor};
if (!ec_sig) {
ec = AlgorithmErrc::SigningErr;
std::cout << "1\n";
return {};
}
const BIGNUM* ec_sig_r = nullptr;
const BIGNUM* ec_sig_s = nullptr;
ECDSA_SIG_get0(ec_sig.get(), &ec_sig_r, &ec_sig_s);
auto r_len = BN_num_bytes(ec_sig_r);
auto s_len = BN_num_bytes(ec_sig_s);
auto bn_len = (degree + 7) / 8;
if ((r_len > bn_len) || (s_len > bn_len)) {
ec = AlgorithmErrc::SigningErr;
std::cout << "2\n";
return {};
}
auto buf_len = 2 * bn_len;
new_sign.resize(buf_len);
BN_bn2bin(ec_sig_r, (unsigned char*)&new_sign[0] + bn_len - r_len);
BN_bn2bin(ec_sig_s, (unsigned char*)&new_sign[0] + buf_len - s_len);
return new_sign;
}
} // END namespace jwt
#endif