Vulkan Memory Allocator
vk_mem_alloc.h
Go to the documentation of this file.
1 //
2 // Copyright (c) 2017 Advanced Micro Devices, Inc. All rights reserved.
3 //
4 // Permission is hereby granted, free of charge, to any person obtaining a copy
5 // of this software and associated documentation files (the "Software"), to deal
6 // in the Software without restriction, including without limitation the rights
7 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
8 // copies of the Software, and to permit persons to whom the Software is
9 // furnished to do so, subject to the following conditions:
10 //
11 // The above copyright notice and this permission notice shall be included in
12 // all copies or substantial portions of the Software.
13 //
14 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
17 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
19 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
20 // THE SOFTWARE.
21 //
22 
23 #ifndef AMD_VULKAN_MEMORY_ALLOCATOR_H
24 #define AMD_VULKAN_MEMORY_ALLOCATOR_H
25 
387 #include <vulkan/vulkan.h>
388 
390 
394 VK_DEFINE_HANDLE(VmaAllocator)
395 
396 typedef void (VKAPI_PTR *PFN_vmaAllocateDeviceMemoryFunction)(
398  VmaAllocator allocator,
399  uint32_t memoryType,
400  VkDeviceMemory memory,
401  VkDeviceSize size);
403 typedef void (VKAPI_PTR *PFN_vmaFreeDeviceMemoryFunction)(
404  VmaAllocator allocator,
405  uint32_t memoryType,
406  VkDeviceMemory memory,
407  VkDeviceSize size);
408 
416 typedef struct VmaDeviceMemoryCallbacks {
422 
424 typedef enum VmaAllocatorFlagBits {
430 
433 typedef VkFlags VmaAllocatorFlags;
434 
439 typedef struct VmaVulkanFunctions {
440  PFN_vkGetPhysicalDeviceProperties vkGetPhysicalDeviceProperties;
441  PFN_vkGetPhysicalDeviceMemoryProperties vkGetPhysicalDeviceMemoryProperties;
442  PFN_vkAllocateMemory vkAllocateMemory;
443  PFN_vkFreeMemory vkFreeMemory;
444  PFN_vkMapMemory vkMapMemory;
445  PFN_vkUnmapMemory vkUnmapMemory;
446  PFN_vkBindBufferMemory vkBindBufferMemory;
447  PFN_vkBindImageMemory vkBindImageMemory;
448  PFN_vkGetBufferMemoryRequirements vkGetBufferMemoryRequirements;
449  PFN_vkGetImageMemoryRequirements vkGetImageMemoryRequirements;
450  PFN_vkCreateBuffer vkCreateBuffer;
451  PFN_vkDestroyBuffer vkDestroyBuffer;
452  PFN_vkCreateImage vkCreateImage;
453  PFN_vkDestroyImage vkDestroyImage;
455 
458 {
462 
463  VkPhysicalDevice physicalDevice;
465 
466  VkDevice device;
468 
471 
474 
475  const VkAllocationCallbacks* pAllocationCallbacks;
477 
492  uint32_t frameInUseCount;
510  const VkDeviceSize* pHeapSizeLimit;
524 
526 VkResult vmaCreateAllocator(
527  const VmaAllocatorCreateInfo* pCreateInfo,
528  VmaAllocator* pAllocator);
529 
532  VmaAllocator allocator);
533 
539  VmaAllocator allocator,
540  const VkPhysicalDeviceProperties** ppPhysicalDeviceProperties);
541 
547  VmaAllocator allocator,
548  const VkPhysicalDeviceMemoryProperties** ppPhysicalDeviceMemoryProperties);
549 
557  VmaAllocator allocator,
558  uint32_t memoryTypeIndex,
559  VkMemoryPropertyFlags* pFlags);
560 
570  VmaAllocator allocator,
571  uint32_t frameIndex);
572 
575 typedef struct VmaStatInfo
576 {
578  uint32_t blockCount;
580  uint32_t allocationCount;
584  VkDeviceSize usedBytes;
586  VkDeviceSize unusedBytes;
587  VkDeviceSize allocationSizeMin, allocationSizeAvg, allocationSizeMax;
588  VkDeviceSize unusedRangeSizeMin, unusedRangeSizeAvg, unusedRangeSizeMax;
589 } VmaStatInfo;
590 
592 typedef struct VmaStats
593 {
594  VmaStatInfo memoryType[VK_MAX_MEMORY_TYPES];
595  VmaStatInfo memoryHeap[VK_MAX_MEMORY_HEAPS];
597 } VmaStats;
598 
600 void vmaCalculateStats(
601  VmaAllocator allocator,
602  VmaStats* pStats);
603 
604 #define VMA_STATS_STRING_ENABLED 1
605 
606 #if VMA_STATS_STRING_ENABLED
607 
609 
612  VmaAllocator allocator,
613  char** ppStatsString,
614  VkBool32 detailedMap);
615 
616 void vmaFreeStatsString(
617  VmaAllocator allocator,
618  char* pStatsString);
619 
620 #endif // #if VMA_STATS_STRING_ENABLED
621 
624 
629 VK_DEFINE_HANDLE(VmaPool)
630 
631 typedef enum VmaMemoryUsage
632 {
638 
641 
644 
648 
663 
702 
705 typedef VkFlags VmaAllocationCreateFlags;
706 
708 {
721  VkMemoryPropertyFlags requiredFlags;
727  VkMemoryPropertyFlags preferredFlags;
729  void* pUserData;
734  VmaPool pool;
736 
751 VkResult vmaFindMemoryTypeIndex(
752  VmaAllocator allocator,
753  uint32_t memoryTypeBits,
754  const VmaAllocationCreateInfo* pAllocationCreateInfo,
755  uint32_t* pMemoryTypeIndex);
756 
759 
764 typedef enum VmaPoolCreateFlagBits {
793 
796 typedef VkFlags VmaPoolCreateFlags;
797 
800 typedef struct VmaPoolCreateInfo {
803  uint32_t memoryTypeIndex;
811  VkDeviceSize blockSize;
838  uint32_t frameInUseCount;
840 
843 typedef struct VmaPoolStats {
846  VkDeviceSize size;
849  VkDeviceSize unusedSize;
862  VkDeviceSize unusedRangeSizeMax;
863 } VmaPoolStats;
864 
871 VkResult vmaCreatePool(
872  VmaAllocator allocator,
873  const VmaPoolCreateInfo* pCreateInfo,
874  VmaPool* pPool);
875 
878 void vmaDestroyPool(
879  VmaAllocator allocator,
880  VmaPool pool);
881 
888 void vmaGetPoolStats(
889  VmaAllocator allocator,
890  VmaPool pool,
891  VmaPoolStats* pPoolStats);
892 
900  VmaAllocator allocator,
901  VmaPool pool,
902  size_t* pLostAllocationCount);
903 
904 VK_DEFINE_HANDLE(VmaAllocation)
905 
906 
908 typedef struct VmaAllocationInfo {
913  uint32_t memoryType;
922  VkDeviceMemory deviceMemory;
927  VkDeviceSize offset;
932  VkDeviceSize size;
938  void* pMappedData;
943  void* pUserData;
945 
956 VkResult vmaAllocateMemory(
957  VmaAllocator allocator,
958  const VkMemoryRequirements* pVkMemoryRequirements,
959  const VmaAllocationCreateInfo* pCreateInfo,
960  VmaAllocation* pAllocation,
961  VmaAllocationInfo* pAllocationInfo);
962 
970  VmaAllocator allocator,
971  VkBuffer buffer,
972  const VmaAllocationCreateInfo* pCreateInfo,
973  VmaAllocation* pAllocation,
974  VmaAllocationInfo* pAllocationInfo);
975 
978  VmaAllocator allocator,
979  VkImage image,
980  const VmaAllocationCreateInfo* pCreateInfo,
981  VmaAllocation* pAllocation,
982  VmaAllocationInfo* pAllocationInfo);
983 
985 void vmaFreeMemory(
986  VmaAllocator allocator,
987  VmaAllocation allocation);
988 
991  VmaAllocator allocator,
992  VmaAllocation allocation,
993  VmaAllocationInfo* pAllocationInfo);
994 
997  VmaAllocator allocator,
998  VmaAllocation allocation,
999  void* pUserData);
1000 
1012  VmaAllocator allocator,
1013  VmaAllocation* pAllocation);
1014 
1023 VkResult vmaMapMemory(
1024  VmaAllocator allocator,
1025  VmaAllocation allocation,
1026  void** ppData);
1027 
1028 void vmaUnmapMemory(
1029  VmaAllocator allocator,
1030  VmaAllocation allocation);
1031 
1053 void vmaUnmapPersistentlyMappedMemory(VmaAllocator allocator);
1054 
1062 VkResult vmaMapPersistentlyMappedMemory(VmaAllocator allocator);
1063 
1065 typedef struct VmaDefragmentationInfo {
1070  VkDeviceSize maxBytesToMove;
1077 
1079 typedef struct VmaDefragmentationStats {
1081  VkDeviceSize bytesMoved;
1083  VkDeviceSize bytesFreed;
1089 
1160 VkResult vmaDefragment(
1161  VmaAllocator allocator,
1162  VmaAllocation* pAllocations,
1163  size_t allocationCount,
1164  VkBool32* pAllocationsChanged,
1165  const VmaDefragmentationInfo *pDefragmentationInfo,
1166  VmaDefragmentationStats* pDefragmentationStats);
1167 
1170 
1193 VkResult vmaCreateBuffer(
1194  VmaAllocator allocator,
1195  const VkBufferCreateInfo* pBufferCreateInfo,
1196  const VmaAllocationCreateInfo* pAllocationCreateInfo,
1197  VkBuffer* pBuffer,
1198  VmaAllocation* pAllocation,
1199  VmaAllocationInfo* pAllocationInfo);
1200 
1209 void vmaDestroyBuffer(
1210  VmaAllocator allocator,
1211  VkBuffer buffer,
1212  VmaAllocation allocation);
1213 
1215 VkResult vmaCreateImage(
1216  VmaAllocator allocator,
1217  const VkImageCreateInfo* pImageCreateInfo,
1218  const VmaAllocationCreateInfo* pAllocationCreateInfo,
1219  VkImage* pImage,
1220  VmaAllocation* pAllocation,
1221  VmaAllocationInfo* pAllocationInfo);
1222 
1231 void vmaDestroyImage(
1232  VmaAllocator allocator,
1233  VkImage image,
1234  VmaAllocation allocation);
1235 
1238 #endif // AMD_VULKAN_MEMORY_ALLOCATOR_H
1239 
1240 // For Visual Studio IntelliSense.
1241 #ifdef __INTELLISENSE__
1242 #define VMA_IMPLEMENTATION
1243 #endif
1244 
1245 #ifdef VMA_IMPLEMENTATION
1246 #undef VMA_IMPLEMENTATION
1247 
1248 #include <cstdint>
1249 #include <cstdlib>
1250 #include <cstring>
1251 
1252 /*******************************************************************************
1253 CONFIGURATION SECTION
1254 
1255 Define some of these macros before each #include of this header or change them
1256 here if you need other then default behavior depending on your environment.
1257 */
1258 
1259 /*
1260 Define this macro to 1 to make the library fetch pointers to Vulkan functions
1261 internally, like:
1262 
1263  vulkanFunctions.vkAllocateMemory = &vkAllocateMemory;
1264 
1265 Define to 0 if you are going to provide you own pointers to Vulkan functions via
1266 VmaAllocatorCreateInfo::pVulkanFunctions.
1267 */
1268 #ifndef VMA_STATIC_VULKAN_FUNCTIONS
1269 #define VMA_STATIC_VULKAN_FUNCTIONS 1
1270 #endif
1271 
1272 // Define this macro to 1 to make the library use STL containers instead of its own implementation.
1273 //#define VMA_USE_STL_CONTAINERS 1
1274 
1275 /* Set this macro to 1 to make the library including and using STL containers:
1276 std::pair, std::vector, std::list, std::unordered_map.
1277 
1278 Set it to 0 or undefined to make the library using its own implementation of
1279 the containers.
1280 */
1281 #if VMA_USE_STL_CONTAINERS
1282  #define VMA_USE_STL_VECTOR 1
1283  #define VMA_USE_STL_UNORDERED_MAP 1
1284  #define VMA_USE_STL_LIST 1
1285 #endif
1286 
1287 #if VMA_USE_STL_VECTOR
1288  #include <vector>
1289 #endif
1290 
1291 #if VMA_USE_STL_UNORDERED_MAP
1292  #include <unordered_map>
1293 #endif
1294 
1295 #if VMA_USE_STL_LIST
1296  #include <list>
1297 #endif
1298 
1299 /*
1300 Following headers are used in this CONFIGURATION section only, so feel free to
1301 remove them if not needed.
1302 */
1303 #include <cassert> // for assert
1304 #include <algorithm> // for min, max
1305 #include <mutex> // for std::mutex
1306 #include <atomic> // for std::atomic
1307 
1308 #if !defined(_WIN32)
1309  #include <malloc.h> // for aligned_alloc()
1310 #endif
1311 
1312 // Normal assert to check for programmer's errors, especially in Debug configuration.
1313 #ifndef VMA_ASSERT
1314  #ifdef _DEBUG
1315  #define VMA_ASSERT(expr) assert(expr)
1316  #else
1317  #define VMA_ASSERT(expr)
1318  #endif
1319 #endif
1320 
1321 // Assert that will be called very often, like inside data structures e.g. operator[].
1322 // Making it non-empty can make program slow.
1323 #ifndef VMA_HEAVY_ASSERT
1324  #ifdef _DEBUG
1325  #define VMA_HEAVY_ASSERT(expr) //VMA_ASSERT(expr)
1326  #else
1327  #define VMA_HEAVY_ASSERT(expr)
1328  #endif
1329 #endif
1330 
1331 #ifndef VMA_NULL
1332  // Value used as null pointer. Define it to e.g.: nullptr, NULL, 0, (void*)0.
1333  #define VMA_NULL nullptr
1334 #endif
1335 
1336 #ifndef VMA_ALIGN_OF
1337  #define VMA_ALIGN_OF(type) (__alignof(type))
1338 #endif
1339 
1340 #ifndef VMA_SYSTEM_ALIGNED_MALLOC
1341  #if defined(_WIN32)
1342  #define VMA_SYSTEM_ALIGNED_MALLOC(size, alignment) (_aligned_malloc((size), (alignment)))
1343  #else
1344  #define VMA_SYSTEM_ALIGNED_MALLOC(size, alignment) (aligned_alloc((alignment), (size) ))
1345  #endif
1346 #endif
1347 
1348 #ifndef VMA_SYSTEM_FREE
1349  #if defined(_WIN32)
1350  #define VMA_SYSTEM_FREE(ptr) _aligned_free(ptr)
1351  #else
1352  #define VMA_SYSTEM_FREE(ptr) free(ptr)
1353  #endif
1354 #endif
1355 
1356 #ifndef VMA_MIN
1357  #define VMA_MIN(v1, v2) (std::min((v1), (v2)))
1358 #endif
1359 
1360 #ifndef VMA_MAX
1361  #define VMA_MAX(v1, v2) (std::max((v1), (v2)))
1362 #endif
1363 
1364 #ifndef VMA_SWAP
1365  #define VMA_SWAP(v1, v2) std::swap((v1), (v2))
1366 #endif
1367 
1368 #ifndef VMA_SORT
1369  #define VMA_SORT(beg, end, cmp) std::sort(beg, end, cmp)
1370 #endif
1371 
1372 #ifndef VMA_DEBUG_LOG
1373  #define VMA_DEBUG_LOG(format, ...)
1374  /*
1375  #define VMA_DEBUG_LOG(format, ...) do { \
1376  printf(format, __VA_ARGS__); \
1377  printf("\n"); \
1378  } while(false)
1379  */
1380 #endif
1381 
1382 // Define this macro to 1 to enable functions: vmaBuildStatsString, vmaFreeStatsString.
1383 #if VMA_STATS_STRING_ENABLED
1384  static inline void VmaUint32ToStr(char* outStr, size_t strLen, uint32_t num)
1385  {
1386  snprintf(outStr, strLen, "%u", static_cast<unsigned int>(num));
1387  }
1388  static inline void VmaUint64ToStr(char* outStr, size_t strLen, uint64_t num)
1389  {
1390  snprintf(outStr, strLen, "%llu", static_cast<unsigned long long>(num));
1391  }
1392  static inline void VmaPtrToStr(char* outStr, size_t strLen, const void* ptr)
1393  {
1394  snprintf(outStr, strLen, "%p", ptr);
1395  }
1396 #endif
1397 
1398 #ifndef VMA_MUTEX
1399  class VmaMutex
1400  {
1401  public:
1402  VmaMutex() { }
1403  ~VmaMutex() { }
1404  void Lock() { m_Mutex.lock(); }
1405  void Unlock() { m_Mutex.unlock(); }
1406  private:
1407  std::mutex m_Mutex;
1408  };
1409  #define VMA_MUTEX VmaMutex
1410 #endif
1411 
1412 /*
1413 If providing your own implementation, you need to implement a subset of std::atomic:
1414 
1415 - Constructor(uint32_t desired)
1416 - uint32_t load() const
1417 - void store(uint32_t desired)
1418 - bool compare_exchange_weak(uint32_t& expected, uint32_t desired)
1419 */
1420 #ifndef VMA_ATOMIC_UINT32
1421  #define VMA_ATOMIC_UINT32 std::atomic<uint32_t>
1422 #endif
1423 
1424 #ifndef VMA_BEST_FIT
1425 
1437  #define VMA_BEST_FIT (1)
1438 #endif
1439 
1440 #ifndef VMA_DEBUG_ALWAYS_OWN_MEMORY
1441 
1445  #define VMA_DEBUG_ALWAYS_OWN_MEMORY (0)
1446 #endif
1447 
1448 #ifndef VMA_DEBUG_ALIGNMENT
1449 
1453  #define VMA_DEBUG_ALIGNMENT (1)
1454 #endif
1455 
1456 #ifndef VMA_DEBUG_MARGIN
1457 
1461  #define VMA_DEBUG_MARGIN (0)
1462 #endif
1463 
1464 #ifndef VMA_DEBUG_GLOBAL_MUTEX
1465 
1469  #define VMA_DEBUG_GLOBAL_MUTEX (0)
1470 #endif
1471 
1472 #ifndef VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY
1473 
1477  #define VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY (1)
1478 #endif
1479 
1480 #ifndef VMA_SMALL_HEAP_MAX_SIZE
1481  #define VMA_SMALL_HEAP_MAX_SIZE (512 * 1024 * 1024)
1483 #endif
1484 
1485 #ifndef VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE
1486  #define VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE (256 * 1024 * 1024)
1488 #endif
1489 
1490 #ifndef VMA_DEFAULT_SMALL_HEAP_BLOCK_SIZE
1491  #define VMA_DEFAULT_SMALL_HEAP_BLOCK_SIZE (64 * 1024 * 1024)
1493 #endif
1494 
1495 static const uint32_t VMA_FRAME_INDEX_LOST = UINT32_MAX;
1496 
1497 /*******************************************************************************
1498 END OF CONFIGURATION
1499 */
1500 
1501 static VkAllocationCallbacks VmaEmptyAllocationCallbacks = {
1502  VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL };
1503 
1504 // Returns number of bits set to 1 in (v).
1505 static inline uint32_t CountBitsSet(uint32_t v)
1506 {
1507  uint32_t c = v - ((v >> 1) & 0x55555555);
1508  c = ((c >> 2) & 0x33333333) + (c & 0x33333333);
1509  c = ((c >> 4) + c) & 0x0F0F0F0F;
1510  c = ((c >> 8) + c) & 0x00FF00FF;
1511  c = ((c >> 16) + c) & 0x0000FFFF;
1512  return c;
1513 }
1514 
1515 // Aligns given value up to nearest multiply of align value. For example: VmaAlignUp(11, 8) = 16.
1516 // Use types like uint32_t, uint64_t as T.
1517 template <typename T>
1518 static inline T VmaAlignUp(T val, T align)
1519 {
1520  return (val + align - 1) / align * align;
1521 }
1522 
1523 // Division with mathematical rounding to nearest number.
1524 template <typename T>
1525 inline T VmaRoundDiv(T x, T y)
1526 {
1527  return (x + (y / (T)2)) / y;
1528 }
1529 
1530 #ifndef VMA_SORT
1531 
1532 template<typename Iterator, typename Compare>
1533 Iterator VmaQuickSortPartition(Iterator beg, Iterator end, Compare cmp)
1534 {
1535  Iterator centerValue = end; --centerValue;
1536  Iterator insertIndex = beg;
1537  for(Iterator memTypeIndex = beg; memTypeIndex < centerValue; ++memTypeIndex)
1538  {
1539  if(cmp(*memTypeIndex, *centerValue))
1540  {
1541  if(insertIndex != memTypeIndex)
1542  {
1543  VMA_SWAP(*memTypeIndex, *insertIndex);
1544  }
1545  ++insertIndex;
1546  }
1547  }
1548  if(insertIndex != centerValue)
1549  {
1550  VMA_SWAP(*insertIndex, *centerValue);
1551  }
1552  return insertIndex;
1553 }
1554 
1555 template<typename Iterator, typename Compare>
1556 void VmaQuickSort(Iterator beg, Iterator end, Compare cmp)
1557 {
1558  if(beg < end)
1559  {
1560  Iterator it = VmaQuickSortPartition<Iterator, Compare>(beg, end, cmp);
1561  VmaQuickSort<Iterator, Compare>(beg, it, cmp);
1562  VmaQuickSort<Iterator, Compare>(it + 1, end, cmp);
1563  }
1564 }
1565 
1566 #define VMA_SORT(beg, end, cmp) VmaQuickSort(beg, end, cmp)
1567 
1568 #endif // #ifndef VMA_SORT
1569 
1570 /*
1571 Returns true if two memory blocks occupy overlapping pages.
1572 ResourceA must be in less memory offset than ResourceB.
1573 
1574 Algorithm is based on "Vulkan 1.0.39 - A Specification (with all registered Vulkan extensions)"
1575 chapter 11.6 "Resource Memory Association", paragraph "Buffer-Image Granularity".
1576 */
1577 static inline bool VmaBlocksOnSamePage(
1578  VkDeviceSize resourceAOffset,
1579  VkDeviceSize resourceASize,
1580  VkDeviceSize resourceBOffset,
1581  VkDeviceSize pageSize)
1582 {
1583  VMA_ASSERT(resourceAOffset + resourceASize <= resourceBOffset && resourceASize > 0 && pageSize > 0);
1584  VkDeviceSize resourceAEnd = resourceAOffset + resourceASize - 1;
1585  VkDeviceSize resourceAEndPage = resourceAEnd & ~(pageSize - 1);
1586  VkDeviceSize resourceBStart = resourceBOffset;
1587  VkDeviceSize resourceBStartPage = resourceBStart & ~(pageSize - 1);
1588  return resourceAEndPage == resourceBStartPage;
1589 }
1590 
1591 enum VmaSuballocationType
1592 {
1593  VMA_SUBALLOCATION_TYPE_FREE = 0,
1594  VMA_SUBALLOCATION_TYPE_UNKNOWN = 1,
1595  VMA_SUBALLOCATION_TYPE_BUFFER = 2,
1596  VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN = 3,
1597  VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR = 4,
1598  VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL = 5,
1599  VMA_SUBALLOCATION_TYPE_MAX_ENUM = 0x7FFFFFFF
1600 };
1601 
1602 /*
1603 Returns true if given suballocation types could conflict and must respect
1604 VkPhysicalDeviceLimits::bufferImageGranularity. They conflict if one is buffer
1605 or linear image and another one is optimal image. If type is unknown, behave
1606 conservatively.
1607 */
1608 static inline bool VmaIsBufferImageGranularityConflict(
1609  VmaSuballocationType suballocType1,
1610  VmaSuballocationType suballocType2)
1611 {
1612  if(suballocType1 > suballocType2)
1613  {
1614  VMA_SWAP(suballocType1, suballocType2);
1615  }
1616 
1617  switch(suballocType1)
1618  {
1619  case VMA_SUBALLOCATION_TYPE_FREE:
1620  return false;
1621  case VMA_SUBALLOCATION_TYPE_UNKNOWN:
1622  return true;
1623  case VMA_SUBALLOCATION_TYPE_BUFFER:
1624  return
1625  suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||
1626  suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
1627  case VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN:
1628  return
1629  suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||
1630  suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR ||
1631  suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
1632  case VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR:
1633  return
1634  suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
1635  case VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL:
1636  return false;
1637  default:
1638  VMA_ASSERT(0);
1639  return true;
1640  }
1641 }
1642 
1643 // Helper RAII class to lock a mutex in constructor and unlock it in destructor (at the end of scope).
1644 struct VmaMutexLock
1645 {
1646 public:
1647  VmaMutexLock(VMA_MUTEX& mutex, bool useMutex) :
1648  m_pMutex(useMutex ? &mutex : VMA_NULL)
1649  {
1650  if(m_pMutex)
1651  {
1652  m_pMutex->Lock();
1653  }
1654  }
1655 
1656  ~VmaMutexLock()
1657  {
1658  if(m_pMutex)
1659  {
1660  m_pMutex->Unlock();
1661  }
1662  }
1663 
1664 private:
1665  VMA_MUTEX* m_pMutex;
1666 };
1667 
1668 #if VMA_DEBUG_GLOBAL_MUTEX
1669  static VMA_MUTEX gDebugGlobalMutex;
1670  #define VMA_DEBUG_GLOBAL_MUTEX_LOCK VmaMutexLock debugGlobalMutexLock(gDebugGlobalMutex, true);
1671 #else
1672  #define VMA_DEBUG_GLOBAL_MUTEX_LOCK
1673 #endif
1674 
1675 // Minimum size of a free suballocation to register it in the free suballocation collection.
1676 static const VkDeviceSize VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER = 16;
1677 
1678 /*
1679 Performs binary search and returns iterator to first element that is greater or
1680 equal to (key), according to comparison (cmp).
1681 
1682 Cmp should return true if first argument is less than second argument.
1683 
1684 Returned value is the found element, if present in the collection or place where
1685 new element with value (key) should be inserted.
1686 */
1687 template <typename IterT, typename KeyT, typename CmpT>
1688 static IterT VmaBinaryFindFirstNotLess(IterT beg, IterT end, const KeyT &key, CmpT cmp)
1689 {
1690  size_t down = 0, up = (end - beg);
1691  while(down < up)
1692  {
1693  const size_t mid = (down + up) / 2;
1694  if(cmp(*(beg+mid), key))
1695  {
1696  down = mid + 1;
1697  }
1698  else
1699  {
1700  up = mid;
1701  }
1702  }
1703  return beg + down;
1704 }
1705 
1707 // Memory allocation
1708 
1709 static void* VmaMalloc(const VkAllocationCallbacks* pAllocationCallbacks, size_t size, size_t alignment)
1710 {
1711  if((pAllocationCallbacks != VMA_NULL) &&
1712  (pAllocationCallbacks->pfnAllocation != VMA_NULL))
1713  {
1714  return (*pAllocationCallbacks->pfnAllocation)(
1715  pAllocationCallbacks->pUserData,
1716  size,
1717  alignment,
1718  VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1719  }
1720  else
1721  {
1722  return VMA_SYSTEM_ALIGNED_MALLOC(size, alignment);
1723  }
1724 }
1725 
1726 static void VmaFree(const VkAllocationCallbacks* pAllocationCallbacks, void* ptr)
1727 {
1728  if((pAllocationCallbacks != VMA_NULL) &&
1729  (pAllocationCallbacks->pfnFree != VMA_NULL))
1730  {
1731  (*pAllocationCallbacks->pfnFree)(pAllocationCallbacks->pUserData, ptr);
1732  }
1733  else
1734  {
1735  VMA_SYSTEM_FREE(ptr);
1736  }
1737 }
1738 
1739 template<typename T>
1740 static T* VmaAllocate(const VkAllocationCallbacks* pAllocationCallbacks)
1741 {
1742  return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T), VMA_ALIGN_OF(T));
1743 }
1744 
1745 template<typename T>
1746 static T* VmaAllocateArray(const VkAllocationCallbacks* pAllocationCallbacks, size_t count)
1747 {
1748  return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T) * count, VMA_ALIGN_OF(T));
1749 }
1750 
1751 #define vma_new(allocator, type) new(VmaAllocate<type>(allocator))(type)
1752 
1753 #define vma_new_array(allocator, type, count) new(VmaAllocateArray<type>((allocator), (count)))(type)
1754 
1755 template<typename T>
1756 static void vma_delete(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr)
1757 {
1758  ptr->~T();
1759  VmaFree(pAllocationCallbacks, ptr);
1760 }
1761 
1762 template<typename T>
1763 static void vma_delete_array(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr, size_t count)
1764 {
1765  if(ptr != VMA_NULL)
1766  {
1767  for(size_t i = count; i--; )
1768  {
1769  ptr[i].~T();
1770  }
1771  VmaFree(pAllocationCallbacks, ptr);
1772  }
1773 }
1774 
1775 // STL-compatible allocator.
1776 template<typename T>
1777 class VmaStlAllocator
1778 {
1779 public:
1780  const VkAllocationCallbacks* const m_pCallbacks;
1781  typedef T value_type;
1782 
1783  VmaStlAllocator(const VkAllocationCallbacks* pCallbacks) : m_pCallbacks(pCallbacks) { }
1784  template<typename U> VmaStlAllocator(const VmaStlAllocator<U>& src) : m_pCallbacks(src.m_pCallbacks) { }
1785 
1786  T* allocate(size_t n) { return VmaAllocateArray<T>(m_pCallbacks, n); }
1787  void deallocate(T* p, size_t n) { VmaFree(m_pCallbacks, p); }
1788 
1789  template<typename U>
1790  bool operator==(const VmaStlAllocator<U>& rhs) const
1791  {
1792  return m_pCallbacks == rhs.m_pCallbacks;
1793  }
1794  template<typename U>
1795  bool operator!=(const VmaStlAllocator<U>& rhs) const
1796  {
1797  return m_pCallbacks != rhs.m_pCallbacks;
1798  }
1799 
1800  VmaStlAllocator& operator=(const VmaStlAllocator& x) = delete;
1801 };
1802 
1803 #if VMA_USE_STL_VECTOR
1804 
1805 #define VmaVector std::vector
1806 
1807 template<typename T, typename allocatorT>
1808 static void VmaVectorInsert(std::vector<T, allocatorT>& vec, size_t index, const T& item)
1809 {
1810  vec.insert(vec.begin() + index, item);
1811 }
1812 
1813 template<typename T, typename allocatorT>
1814 static void VmaVectorRemove(std::vector<T, allocatorT>& vec, size_t index)
1815 {
1816  vec.erase(vec.begin() + index);
1817 }
1818 
1819 #else // #if VMA_USE_STL_VECTOR
1820 
1821 /* Class with interface compatible with subset of std::vector.
1822 T must be POD because constructors and destructors are not called and memcpy is
1823 used for these objects. */
1824 template<typename T, typename AllocatorT>
1825 class VmaVector
1826 {
1827 public:
1828  typedef T value_type;
1829 
1830  VmaVector(const AllocatorT& allocator) :
1831  m_Allocator(allocator),
1832  m_pArray(VMA_NULL),
1833  m_Count(0),
1834  m_Capacity(0)
1835  {
1836  }
1837 
1838  VmaVector(size_t count, const AllocatorT& allocator) :
1839  m_Allocator(allocator),
1840  m_pArray(count ? (T*)VmaAllocateArray<T>(allocator.m_pCallbacks, count) : VMA_NULL),
1841  m_Count(count),
1842  m_Capacity(count)
1843  {
1844  }
1845 
1846  VmaVector(const VmaVector<T, AllocatorT>& src) :
1847  m_Allocator(src.m_Allocator),
1848  m_pArray(src.m_Count ? (T*)VmaAllocateArray<T>(src.m_Allocator.m_pCallbacks, src.m_Count) : VMA_NULL),
1849  m_Count(src.m_Count),
1850  m_Capacity(src.m_Count)
1851  {
1852  if(m_Count != 0)
1853  {
1854  memcpy(m_pArray, src.m_pArray, m_Count * sizeof(T));
1855  }
1856  }
1857 
1858  ~VmaVector()
1859  {
1860  VmaFree(m_Allocator.m_pCallbacks, m_pArray);
1861  }
1862 
1863  VmaVector& operator=(const VmaVector<T, AllocatorT>& rhs)
1864  {
1865  if(&rhs != this)
1866  {
1867  resize(rhs.m_Count);
1868  if(m_Count != 0)
1869  {
1870  memcpy(m_pArray, rhs.m_pArray, m_Count * sizeof(T));
1871  }
1872  }
1873  return *this;
1874  }
1875 
1876  bool empty() const { return m_Count == 0; }
1877  size_t size() const { return m_Count; }
1878  T* data() { return m_pArray; }
1879  const T* data() const { return m_pArray; }
1880 
1881  T& operator[](size_t index)
1882  {
1883  VMA_HEAVY_ASSERT(index < m_Count);
1884  return m_pArray[index];
1885  }
1886  const T& operator[](size_t index) const
1887  {
1888  VMA_HEAVY_ASSERT(index < m_Count);
1889  return m_pArray[index];
1890  }
1891 
1892  T& front()
1893  {
1894  VMA_HEAVY_ASSERT(m_Count > 0);
1895  return m_pArray[0];
1896  }
1897  const T& front() const
1898  {
1899  VMA_HEAVY_ASSERT(m_Count > 0);
1900  return m_pArray[0];
1901  }
1902  T& back()
1903  {
1904  VMA_HEAVY_ASSERT(m_Count > 0);
1905  return m_pArray[m_Count - 1];
1906  }
1907  const T& back() const
1908  {
1909  VMA_HEAVY_ASSERT(m_Count > 0);
1910  return m_pArray[m_Count - 1];
1911  }
1912 
1913  void reserve(size_t newCapacity, bool freeMemory = false)
1914  {
1915  newCapacity = VMA_MAX(newCapacity, m_Count);
1916 
1917  if((newCapacity < m_Capacity) && !freeMemory)
1918  {
1919  newCapacity = m_Capacity;
1920  }
1921 
1922  if(newCapacity != m_Capacity)
1923  {
1924  T* const newArray = newCapacity ? VmaAllocateArray<T>(m_Allocator, newCapacity) : VMA_NULL;
1925  if(m_Count != 0)
1926  {
1927  memcpy(newArray, m_pArray, m_Count * sizeof(T));
1928  }
1929  VmaFree(m_Allocator.m_pCallbacks, m_pArray);
1930  m_Capacity = newCapacity;
1931  m_pArray = newArray;
1932  }
1933  }
1934 
1935  void resize(size_t newCount, bool freeMemory = false)
1936  {
1937  size_t newCapacity = m_Capacity;
1938  if(newCount > m_Capacity)
1939  {
1940  newCapacity = VMA_MAX(newCount, VMA_MAX(m_Capacity * 3 / 2, (size_t)8));
1941  }
1942  else if(freeMemory)
1943  {
1944  newCapacity = newCount;
1945  }
1946 
1947  if(newCapacity != m_Capacity)
1948  {
1949  T* const newArray = newCapacity ? VmaAllocateArray<T>(m_Allocator.m_pCallbacks, newCapacity) : VMA_NULL;
1950  const size_t elementsToCopy = VMA_MIN(m_Count, newCount);
1951  if(elementsToCopy != 0)
1952  {
1953  memcpy(newArray, m_pArray, elementsToCopy * sizeof(T));
1954  }
1955  VmaFree(m_Allocator.m_pCallbacks, m_pArray);
1956  m_Capacity = newCapacity;
1957  m_pArray = newArray;
1958  }
1959 
1960  m_Count = newCount;
1961  }
1962 
1963  void clear(bool freeMemory = false)
1964  {
1965  resize(0, freeMemory);
1966  }
1967 
1968  void insert(size_t index, const T& src)
1969  {
1970  VMA_HEAVY_ASSERT(index <= m_Count);
1971  const size_t oldCount = size();
1972  resize(oldCount + 1);
1973  if(index < oldCount)
1974  {
1975  memmove(m_pArray + (index + 1), m_pArray + index, (oldCount - index) * sizeof(T));
1976  }
1977  m_pArray[index] = src;
1978  }
1979 
1980  void remove(size_t index)
1981  {
1982  VMA_HEAVY_ASSERT(index < m_Count);
1983  const size_t oldCount = size();
1984  if(index < oldCount - 1)
1985  {
1986  memmove(m_pArray + index, m_pArray + (index + 1), (oldCount - index - 1) * sizeof(T));
1987  }
1988  resize(oldCount - 1);
1989  }
1990 
1991  void push_back(const T& src)
1992  {
1993  const size_t newIndex = size();
1994  resize(newIndex + 1);
1995  m_pArray[newIndex] = src;
1996  }
1997 
1998  void pop_back()
1999  {
2000  VMA_HEAVY_ASSERT(m_Count > 0);
2001  resize(size() - 1);
2002  }
2003 
2004  void push_front(const T& src)
2005  {
2006  insert(0, src);
2007  }
2008 
2009  void pop_front()
2010  {
2011  VMA_HEAVY_ASSERT(m_Count > 0);
2012  remove(0);
2013  }
2014 
2015  typedef T* iterator;
2016 
2017  iterator begin() { return m_pArray; }
2018  iterator end() { return m_pArray + m_Count; }
2019 
2020 private:
2021  AllocatorT m_Allocator;
2022  T* m_pArray;
2023  size_t m_Count;
2024  size_t m_Capacity;
2025 };
2026 
2027 template<typename T, typename allocatorT>
2028 static void VmaVectorInsert(VmaVector<T, allocatorT>& vec, size_t index, const T& item)
2029 {
2030  vec.insert(index, item);
2031 }
2032 
2033 template<typename T, typename allocatorT>
2034 static void VmaVectorRemove(VmaVector<T, allocatorT>& vec, size_t index)
2035 {
2036  vec.remove(index);
2037 }
2038 
2039 #endif // #if VMA_USE_STL_VECTOR
2040 
2041 template<typename CmpLess, typename VectorT>
2042 size_t VmaVectorInsertSorted(VectorT& vector, const typename VectorT::value_type& value)
2043 {
2044  const size_t indexToInsert = VmaBinaryFindFirstNotLess(
2045  vector.data(),
2046  vector.data() + vector.size(),
2047  value,
2048  CmpLess()) - vector.data();
2049  VmaVectorInsert(vector, indexToInsert, value);
2050  return indexToInsert;
2051 }
2052 
2053 template<typename CmpLess, typename VectorT>
2054 bool VmaVectorRemoveSorted(VectorT& vector, const typename VectorT::value_type& value)
2055 {
2056  CmpLess comparator;
2057  typename VectorT::iterator it = VmaBinaryFindFirstNotLess(
2058  vector.begin(),
2059  vector.end(),
2060  value,
2061  comparator);
2062  if((it != vector.end()) && !comparator(*it, value) && !comparator(value, *it))
2063  {
2064  size_t indexToRemove = it - vector.begin();
2065  VmaVectorRemove(vector, indexToRemove);
2066  return true;
2067  }
2068  return false;
2069 }
2070 
2071 template<typename CmpLess, typename VectorT>
2072 size_t VmaVectorFindSorted(const VectorT& vector, const typename VectorT::value_type& value)
2073 {
2074  CmpLess comparator;
2075  typename VectorT::iterator it = VmaBinaryFindFirstNotLess(
2076  vector.data(),
2077  vector.data() + vector.size(),
2078  value,
2079  comparator);
2080  if(it != vector.size() && !comparator(*it, value) && !comparator(value, *it))
2081  {
2082  return it - vector.begin();
2083  }
2084  else
2085  {
2086  return vector.size();
2087  }
2088 }
2089 
2091 // class VmaPoolAllocator
2092 
2093 /*
2094 Allocator for objects of type T using a list of arrays (pools) to speed up
2095 allocation. Number of elements that can be allocated is not bounded because
2096 allocator can create multiple blocks.
2097 */
2098 template<typename T>
2099 class VmaPoolAllocator
2100 {
2101 public:
2102  VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, size_t itemsPerBlock);
2103  ~VmaPoolAllocator();
2104  void Clear();
2105  T* Alloc();
2106  void Free(T* ptr);
2107 
2108 private:
2109  union Item
2110  {
2111  uint32_t NextFreeIndex;
2112  T Value;
2113  };
2114 
2115  struct ItemBlock
2116  {
2117  Item* pItems;
2118  uint32_t FirstFreeIndex;
2119  };
2120 
2121  const VkAllocationCallbacks* m_pAllocationCallbacks;
2122  size_t m_ItemsPerBlock;
2123  VmaVector< ItemBlock, VmaStlAllocator<ItemBlock> > m_ItemBlocks;
2124 
2125  ItemBlock& CreateNewBlock();
2126 };
2127 
2128 template<typename T>
2129 VmaPoolAllocator<T>::VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, size_t itemsPerBlock) :
2130  m_pAllocationCallbacks(pAllocationCallbacks),
2131  m_ItemsPerBlock(itemsPerBlock),
2132  m_ItemBlocks(VmaStlAllocator<ItemBlock>(pAllocationCallbacks))
2133 {
2134  VMA_ASSERT(itemsPerBlock > 0);
2135 }
2136 
2137 template<typename T>
2138 VmaPoolAllocator<T>::~VmaPoolAllocator()
2139 {
2140  Clear();
2141 }
2142 
2143 template<typename T>
2144 void VmaPoolAllocator<T>::Clear()
2145 {
2146  for(size_t i = m_ItemBlocks.size(); i--; )
2147  vma_delete_array(m_pAllocationCallbacks, m_ItemBlocks[i].pItems, m_ItemsPerBlock);
2148  m_ItemBlocks.clear();
2149 }
2150 
2151 template<typename T>
2152 T* VmaPoolAllocator<T>::Alloc()
2153 {
2154  for(size_t i = m_ItemBlocks.size(); i--; )
2155  {
2156  ItemBlock& block = m_ItemBlocks[i];
2157  // This block has some free items: Use first one.
2158  if(block.FirstFreeIndex != UINT32_MAX)
2159  {
2160  Item* const pItem = &block.pItems[block.FirstFreeIndex];
2161  block.FirstFreeIndex = pItem->NextFreeIndex;
2162  return &pItem->Value;
2163  }
2164  }
2165 
2166  // No block has free item: Create new one and use it.
2167  ItemBlock& newBlock = CreateNewBlock();
2168  Item* const pItem = &newBlock.pItems[0];
2169  newBlock.FirstFreeIndex = pItem->NextFreeIndex;
2170  return &pItem->Value;
2171 }
2172 
2173 template<typename T>
2174 void VmaPoolAllocator<T>::Free(T* ptr)
2175 {
2176  // Search all memory blocks to find ptr.
2177  for(size_t i = 0; i < m_ItemBlocks.size(); ++i)
2178  {
2179  ItemBlock& block = m_ItemBlocks[i];
2180 
2181  // Casting to union.
2182  Item* pItemPtr;
2183  memcpy(&pItemPtr, &ptr, sizeof(pItemPtr));
2184 
2185  // Check if pItemPtr is in address range of this block.
2186  if((pItemPtr >= block.pItems) && (pItemPtr < block.pItems + m_ItemsPerBlock))
2187  {
2188  const uint32_t index = static_cast<uint32_t>(pItemPtr - block.pItems);
2189  pItemPtr->NextFreeIndex = block.FirstFreeIndex;
2190  block.FirstFreeIndex = index;
2191  return;
2192  }
2193  }
2194  VMA_ASSERT(0 && "Pointer doesn't belong to this memory pool.");
2195 }
2196 
2197 template<typename T>
2198 typename VmaPoolAllocator<T>::ItemBlock& VmaPoolAllocator<T>::CreateNewBlock()
2199 {
2200  ItemBlock newBlock = {
2201  vma_new_array(m_pAllocationCallbacks, Item, m_ItemsPerBlock), 0 };
2202 
2203  m_ItemBlocks.push_back(newBlock);
2204 
2205  // Setup singly-linked list of all free items in this block.
2206  for(uint32_t i = 0; i < m_ItemsPerBlock - 1; ++i)
2207  newBlock.pItems[i].NextFreeIndex = i + 1;
2208  newBlock.pItems[m_ItemsPerBlock - 1].NextFreeIndex = UINT32_MAX;
2209  return m_ItemBlocks.back();
2210 }
2211 
2213 // class VmaRawList, VmaList
2214 
2215 #if VMA_USE_STL_LIST
2216 
2217 #define VmaList std::list
2218 
2219 #else // #if VMA_USE_STL_LIST
2220 
2221 template<typename T>
2222 struct VmaListItem
2223 {
2224  VmaListItem* pPrev;
2225  VmaListItem* pNext;
2226  T Value;
2227 };
2228 
2229 // Doubly linked list.
2230 template<typename T>
2231 class VmaRawList
2232 {
2233 public:
2234  typedef VmaListItem<T> ItemType;
2235 
2236  VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks);
2237  ~VmaRawList();
2238  void Clear();
2239 
2240  size_t GetCount() const { return m_Count; }
2241  bool IsEmpty() const { return m_Count == 0; }
2242 
2243  ItemType* Front() { return m_pFront; }
2244  const ItemType* Front() const { return m_pFront; }
2245  ItemType* Back() { return m_pBack; }
2246  const ItemType* Back() const { return m_pBack; }
2247 
2248  ItemType* PushBack();
2249  ItemType* PushFront();
2250  ItemType* PushBack(const T& value);
2251  ItemType* PushFront(const T& value);
2252  void PopBack();
2253  void PopFront();
2254 
2255  // Item can be null - it means PushBack.
2256  ItemType* InsertBefore(ItemType* pItem);
2257  // Item can be null - it means PushFront.
2258  ItemType* InsertAfter(ItemType* pItem);
2259 
2260  ItemType* InsertBefore(ItemType* pItem, const T& value);
2261  ItemType* InsertAfter(ItemType* pItem, const T& value);
2262 
2263  void Remove(ItemType* pItem);
2264 
2265 private:
2266  const VkAllocationCallbacks* const m_pAllocationCallbacks;
2267  VmaPoolAllocator<ItemType> m_ItemAllocator;
2268  ItemType* m_pFront;
2269  ItemType* m_pBack;
2270  size_t m_Count;
2271 
2272  // Declared not defined, to block copy constructor and assignment operator.
2273  VmaRawList(const VmaRawList<T>& src);
2274  VmaRawList<T>& operator=(const VmaRawList<T>& rhs);
2275 };
2276 
2277 template<typename T>
2278 VmaRawList<T>::VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks) :
2279  m_pAllocationCallbacks(pAllocationCallbacks),
2280  m_ItemAllocator(pAllocationCallbacks, 128),
2281  m_pFront(VMA_NULL),
2282  m_pBack(VMA_NULL),
2283  m_Count(0)
2284 {
2285 }
2286 
2287 template<typename T>
2288 VmaRawList<T>::~VmaRawList()
2289 {
2290  // Intentionally not calling Clear, because that would be unnecessary
2291  // computations to return all items to m_ItemAllocator as free.
2292 }
2293 
2294 template<typename T>
2295 void VmaRawList<T>::Clear()
2296 {
2297  if(IsEmpty() == false)
2298  {
2299  ItemType* pItem = m_pBack;
2300  while(pItem != VMA_NULL)
2301  {
2302  ItemType* const pPrevItem = pItem->pPrev;
2303  m_ItemAllocator.Free(pItem);
2304  pItem = pPrevItem;
2305  }
2306  m_pFront = VMA_NULL;
2307  m_pBack = VMA_NULL;
2308  m_Count = 0;
2309  }
2310 }
2311 
2312 template<typename T>
2313 VmaListItem<T>* VmaRawList<T>::PushBack()
2314 {
2315  ItemType* const pNewItem = m_ItemAllocator.Alloc();
2316  pNewItem->pNext = VMA_NULL;
2317  if(IsEmpty())
2318  {
2319  pNewItem->pPrev = VMA_NULL;
2320  m_pFront = pNewItem;
2321  m_pBack = pNewItem;
2322  m_Count = 1;
2323  }
2324  else
2325  {
2326  pNewItem->pPrev = m_pBack;
2327  m_pBack->pNext = pNewItem;
2328  m_pBack = pNewItem;
2329  ++m_Count;
2330  }
2331  return pNewItem;
2332 }
2333 
2334 template<typename T>
2335 VmaListItem<T>* VmaRawList<T>::PushFront()
2336 {
2337  ItemType* const pNewItem = m_ItemAllocator.Alloc();
2338  pNewItem->pPrev = VMA_NULL;
2339  if(IsEmpty())
2340  {
2341  pNewItem->pNext = VMA_NULL;
2342  m_pFront = pNewItem;
2343  m_pBack = pNewItem;
2344  m_Count = 1;
2345  }
2346  else
2347  {
2348  pNewItem->pNext = m_pFront;
2349  m_pFront->pPrev = pNewItem;
2350  m_pFront = pNewItem;
2351  ++m_Count;
2352  }
2353  return pNewItem;
2354 }
2355 
2356 template<typename T>
2357 VmaListItem<T>* VmaRawList<T>::PushBack(const T& value)
2358 {
2359  ItemType* const pNewItem = PushBack();
2360  pNewItem->Value = value;
2361  return pNewItem;
2362 }
2363 
2364 template<typename T>
2365 VmaListItem<T>* VmaRawList<T>::PushFront(const T& value)
2366 {
2367  ItemType* const pNewItem = PushFront();
2368  pNewItem->Value = value;
2369  return pNewItem;
2370 }
2371 
2372 template<typename T>
2373 void VmaRawList<T>::PopBack()
2374 {
2375  VMA_HEAVY_ASSERT(m_Count > 0);
2376  ItemType* const pBackItem = m_pBack;
2377  ItemType* const pPrevItem = pBackItem->pPrev;
2378  if(pPrevItem != VMA_NULL)
2379  {
2380  pPrevItem->pNext = VMA_NULL;
2381  }
2382  m_pBack = pPrevItem;
2383  m_ItemAllocator.Free(pBackItem);
2384  --m_Count;
2385 }
2386 
2387 template<typename T>
2388 void VmaRawList<T>::PopFront()
2389 {
2390  VMA_HEAVY_ASSERT(m_Count > 0);
2391  ItemType* const pFrontItem = m_pFront;
2392  ItemType* const pNextItem = pFrontItem->pNext;
2393  if(pNextItem != VMA_NULL)
2394  {
2395  pNextItem->pPrev = VMA_NULL;
2396  }
2397  m_pFront = pNextItem;
2398  m_ItemAllocator.Free(pFrontItem);
2399  --m_Count;
2400 }
2401 
2402 template<typename T>
2403 void VmaRawList<T>::Remove(ItemType* pItem)
2404 {
2405  VMA_HEAVY_ASSERT(pItem != VMA_NULL);
2406  VMA_HEAVY_ASSERT(m_Count > 0);
2407 
2408  if(pItem->pPrev != VMA_NULL)
2409  {
2410  pItem->pPrev->pNext = pItem->pNext;
2411  }
2412  else
2413  {
2414  VMA_HEAVY_ASSERT(m_pFront == pItem);
2415  m_pFront = pItem->pNext;
2416  }
2417 
2418  if(pItem->pNext != VMA_NULL)
2419  {
2420  pItem->pNext->pPrev = pItem->pPrev;
2421  }
2422  else
2423  {
2424  VMA_HEAVY_ASSERT(m_pBack == pItem);
2425  m_pBack = pItem->pPrev;
2426  }
2427 
2428  m_ItemAllocator.Free(pItem);
2429  --m_Count;
2430 }
2431 
2432 template<typename T>
2433 VmaListItem<T>* VmaRawList<T>::InsertBefore(ItemType* pItem)
2434 {
2435  if(pItem != VMA_NULL)
2436  {
2437  ItemType* const prevItem = pItem->pPrev;
2438  ItemType* const newItem = m_ItemAllocator.Alloc();
2439  newItem->pPrev = prevItem;
2440  newItem->pNext = pItem;
2441  pItem->pPrev = newItem;
2442  if(prevItem != VMA_NULL)
2443  {
2444  prevItem->pNext = newItem;
2445  }
2446  else
2447  {
2448  VMA_HEAVY_ASSERT(m_pFront == pItem);
2449  m_pFront = newItem;
2450  }
2451  ++m_Count;
2452  return newItem;
2453  }
2454  else
2455  return PushBack();
2456 }
2457 
2458 template<typename T>
2459 VmaListItem<T>* VmaRawList<T>::InsertAfter(ItemType* pItem)
2460 {
2461  if(pItem != VMA_NULL)
2462  {
2463  ItemType* const nextItem = pItem->pNext;
2464  ItemType* const newItem = m_ItemAllocator.Alloc();
2465  newItem->pNext = nextItem;
2466  newItem->pPrev = pItem;
2467  pItem->pNext = newItem;
2468  if(nextItem != VMA_NULL)
2469  {
2470  nextItem->pPrev = newItem;
2471  }
2472  else
2473  {
2474  VMA_HEAVY_ASSERT(m_pBack == pItem);
2475  m_pBack = newItem;
2476  }
2477  ++m_Count;
2478  return newItem;
2479  }
2480  else
2481  return PushFront();
2482 }
2483 
2484 template<typename T>
2485 VmaListItem<T>* VmaRawList<T>::InsertBefore(ItemType* pItem, const T& value)
2486 {
2487  ItemType* const newItem = InsertBefore(pItem);
2488  newItem->Value = value;
2489  return newItem;
2490 }
2491 
2492 template<typename T>
2493 VmaListItem<T>* VmaRawList<T>::InsertAfter(ItemType* pItem, const T& value)
2494 {
2495  ItemType* const newItem = InsertAfter(pItem);
2496  newItem->Value = value;
2497  return newItem;
2498 }
2499 
2500 template<typename T, typename AllocatorT>
2501 class VmaList
2502 {
2503 public:
2504  class iterator
2505  {
2506  public:
2507  iterator() :
2508  m_pList(VMA_NULL),
2509  m_pItem(VMA_NULL)
2510  {
2511  }
2512 
2513  T& operator*() const
2514  {
2515  VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
2516  return m_pItem->Value;
2517  }
2518  T* operator->() const
2519  {
2520  VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
2521  return &m_pItem->Value;
2522  }
2523 
2524  iterator& operator++()
2525  {
2526  VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
2527  m_pItem = m_pItem->pNext;
2528  return *this;
2529  }
2530  iterator& operator--()
2531  {
2532  if(m_pItem != VMA_NULL)
2533  {
2534  m_pItem = m_pItem->pPrev;
2535  }
2536  else
2537  {
2538  VMA_HEAVY_ASSERT(!m_pList.IsEmpty());
2539  m_pItem = m_pList->Back();
2540  }
2541  return *this;
2542  }
2543 
2544  iterator operator++(int)
2545  {
2546  iterator result = *this;
2547  ++*this;
2548  return result;
2549  }
2550  iterator operator--(int)
2551  {
2552  iterator result = *this;
2553  --*this;
2554  return result;
2555  }
2556 
2557  bool operator==(const iterator& rhs) const
2558  {
2559  VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);
2560  return m_pItem == rhs.m_pItem;
2561  }
2562  bool operator!=(const iterator& rhs) const
2563  {
2564  VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);
2565  return m_pItem != rhs.m_pItem;
2566  }
2567 
2568  private:
2569  VmaRawList<T>* m_pList;
2570  VmaListItem<T>* m_pItem;
2571 
2572  iterator(VmaRawList<T>* pList, VmaListItem<T>* pItem) :
2573  m_pList(pList),
2574  m_pItem(pItem)
2575  {
2576  }
2577 
2578  friend class VmaList<T, AllocatorT>;
2579  };
2580 
2581  class const_iterator
2582  {
2583  public:
2584  const_iterator() :
2585  m_pList(VMA_NULL),
2586  m_pItem(VMA_NULL)
2587  {
2588  }
2589 
2590  const_iterator(const iterator& src) :
2591  m_pList(src.m_pList),
2592  m_pItem(src.m_pItem)
2593  {
2594  }
2595 
2596  const T& operator*() const
2597  {
2598  VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
2599  return m_pItem->Value;
2600  }
2601  const T* operator->() const
2602  {
2603  VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
2604  return &m_pItem->Value;
2605  }
2606 
2607  const_iterator& operator++()
2608  {
2609  VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
2610  m_pItem = m_pItem->pNext;
2611  return *this;
2612  }
2613  const_iterator& operator--()
2614  {
2615  if(m_pItem != VMA_NULL)
2616  {
2617  m_pItem = m_pItem->pPrev;
2618  }
2619  else
2620  {
2621  VMA_HEAVY_ASSERT(!m_pList->IsEmpty());
2622  m_pItem = m_pList->Back();
2623  }
2624  return *this;
2625  }
2626 
2627  const_iterator operator++(int)
2628  {
2629  const_iterator result = *this;
2630  ++*this;
2631  return result;
2632  }
2633  const_iterator operator--(int)
2634  {
2635  const_iterator result = *this;
2636  --*this;
2637  return result;
2638  }
2639 
2640  bool operator==(const const_iterator& rhs) const
2641  {
2642  VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);
2643  return m_pItem == rhs.m_pItem;
2644  }
2645  bool operator!=(const const_iterator& rhs) const
2646  {
2647  VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);
2648  return m_pItem != rhs.m_pItem;
2649  }
2650 
2651  private:
2652  const_iterator(const VmaRawList<T>* pList, const VmaListItem<T>* pItem) :
2653  m_pList(pList),
2654  m_pItem(pItem)
2655  {
2656  }
2657 
2658  const VmaRawList<T>* m_pList;
2659  const VmaListItem<T>* m_pItem;
2660 
2661  friend class VmaList<T, AllocatorT>;
2662  };
2663 
2664  VmaList(const AllocatorT& allocator) : m_RawList(allocator.m_pCallbacks) { }
2665 
2666  bool empty() const { return m_RawList.IsEmpty(); }
2667  size_t size() const { return m_RawList.GetCount(); }
2668 
2669  iterator begin() { return iterator(&m_RawList, m_RawList.Front()); }
2670  iterator end() { return iterator(&m_RawList, VMA_NULL); }
2671 
2672  const_iterator cbegin() const { return const_iterator(&m_RawList, m_RawList.Front()); }
2673  const_iterator cend() const { return const_iterator(&m_RawList, VMA_NULL); }
2674 
2675  void clear() { m_RawList.Clear(); }
2676  void push_back(const T& value) { m_RawList.PushBack(value); }
2677  void erase(iterator it) { m_RawList.Remove(it.m_pItem); }
2678  iterator insert(iterator it, const T& value) { return iterator(&m_RawList, m_RawList.InsertBefore(it.m_pItem, value)); }
2679 
2680 private:
2681  VmaRawList<T> m_RawList;
2682 };
2683 
2684 #endif // #if VMA_USE_STL_LIST
2685 
2687 // class VmaMap
2688 
2689 // Unused in this version.
2690 #if 0
2691 
2692 #if VMA_USE_STL_UNORDERED_MAP
2693 
2694 #define VmaPair std::pair
2695 
2696 #define VMA_MAP_TYPE(KeyT, ValueT) \
2697  std::unordered_map< KeyT, ValueT, std::hash<KeyT>, std::equal_to<KeyT>, VmaStlAllocator< std::pair<KeyT, ValueT> > >
2698 
2699 #else // #if VMA_USE_STL_UNORDERED_MAP
2700 
2701 template<typename T1, typename T2>
2702 struct VmaPair
2703 {
2704  T1 first;
2705  T2 second;
2706 
2707  VmaPair() : first(), second() { }
2708  VmaPair(const T1& firstSrc, const T2& secondSrc) : first(firstSrc), second(secondSrc) { }
2709 };
2710 
2711 /* Class compatible with subset of interface of std::unordered_map.
2712 KeyT, ValueT must be POD because they will be stored in VmaVector.
2713 */
2714 template<typename KeyT, typename ValueT>
2715 class VmaMap
2716 {
2717 public:
2718  typedef VmaPair<KeyT, ValueT> PairType;
2719  typedef PairType* iterator;
2720 
2721  VmaMap(const VmaStlAllocator<PairType>& allocator) : m_Vector(allocator) { }
2722 
2723  iterator begin() { return m_Vector.begin(); }
2724  iterator end() { return m_Vector.end(); }
2725 
2726  void insert(const PairType& pair);
2727  iterator find(const KeyT& key);
2728  void erase(iterator it);
2729 
2730 private:
2731  VmaVector< PairType, VmaStlAllocator<PairType> > m_Vector;
2732 };
2733 
2734 #define VMA_MAP_TYPE(KeyT, ValueT) VmaMap<KeyT, ValueT>
2735 
2736 template<typename FirstT, typename SecondT>
2737 struct VmaPairFirstLess
2738 {
2739  bool operator()(const VmaPair<FirstT, SecondT>& lhs, const VmaPair<FirstT, SecondT>& rhs) const
2740  {
2741  return lhs.first < rhs.first;
2742  }
2743  bool operator()(const VmaPair<FirstT, SecondT>& lhs, const FirstT& rhsFirst) const
2744  {
2745  return lhs.first < rhsFirst;
2746  }
2747 };
2748 
2749 template<typename KeyT, typename ValueT>
2750 void VmaMap<KeyT, ValueT>::insert(const PairType& pair)
2751 {
2752  const size_t indexToInsert = VmaBinaryFindFirstNotLess(
2753  m_Vector.data(),
2754  m_Vector.data() + m_Vector.size(),
2755  pair,
2756  VmaPairFirstLess<KeyT, ValueT>()) - m_Vector.data();
2757  VmaVectorInsert(m_Vector, indexToInsert, pair);
2758 }
2759 
2760 template<typename KeyT, typename ValueT>
2761 VmaPair<KeyT, ValueT>* VmaMap<KeyT, ValueT>::find(const KeyT& key)
2762 {
2763  PairType* it = VmaBinaryFindFirstNotLess(
2764  m_Vector.data(),
2765  m_Vector.data() + m_Vector.size(),
2766  key,
2767  VmaPairFirstLess<KeyT, ValueT>());
2768  if((it != m_Vector.end()) && (it->first == key))
2769  {
2770  return it;
2771  }
2772  else
2773  {
2774  return m_Vector.end();
2775  }
2776 }
2777 
2778 template<typename KeyT, typename ValueT>
2779 void VmaMap<KeyT, ValueT>::erase(iterator it)
2780 {
2781  VmaVectorRemove(m_Vector, it - m_Vector.begin());
2782 }
2783 
2784 #endif // #if VMA_USE_STL_UNORDERED_MAP
2785 
2786 #endif // #if 0
2787 
2789 
2790 class VmaDeviceMemoryBlock;
2791 
2792 enum VMA_BLOCK_VECTOR_TYPE
2793 {
2794  VMA_BLOCK_VECTOR_TYPE_UNMAPPED,
2795  VMA_BLOCK_VECTOR_TYPE_MAPPED,
2796  VMA_BLOCK_VECTOR_TYPE_COUNT
2797 };
2798 
2799 static VMA_BLOCK_VECTOR_TYPE VmaAllocationCreateFlagsToBlockVectorType(VmaAllocationCreateFlags flags)
2800 {
2801  return (flags & VMA_ALLOCATION_CREATE_PERSISTENT_MAP_BIT) != 0 ?
2802  VMA_BLOCK_VECTOR_TYPE_MAPPED :
2803  VMA_BLOCK_VECTOR_TYPE_UNMAPPED;
2804 }
2805 
2806 struct VmaAllocation_T
2807 {
2808 public:
2809  enum ALLOCATION_TYPE
2810  {
2811  ALLOCATION_TYPE_NONE,
2812  ALLOCATION_TYPE_BLOCK,
2813  ALLOCATION_TYPE_OWN,
2814  };
2815 
2816  VmaAllocation_T(uint32_t currentFrameIndex) :
2817  m_Alignment(1),
2818  m_Size(0),
2819  m_pUserData(VMA_NULL),
2820  m_Type(ALLOCATION_TYPE_NONE),
2821  m_SuballocationType(VMA_SUBALLOCATION_TYPE_UNKNOWN),
2822  m_LastUseFrameIndex(currentFrameIndex)
2823  {
2824  }
2825 
2826  void InitBlockAllocation(
2827  VmaPool hPool,
2828  VmaDeviceMemoryBlock* block,
2829  VkDeviceSize offset,
2830  VkDeviceSize alignment,
2831  VkDeviceSize size,
2832  VmaSuballocationType suballocationType,
2833  void* pUserData,
2834  bool canBecomeLost)
2835  {
2836  VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE);
2837  VMA_ASSERT(block != VMA_NULL);
2838  m_Type = ALLOCATION_TYPE_BLOCK;
2839  m_Alignment = alignment;
2840  m_Size = size;
2841  m_pUserData = pUserData;
2842  m_SuballocationType = suballocationType;
2843  m_BlockAllocation.m_hPool = hPool;
2844  m_BlockAllocation.m_Block = block;
2845  m_BlockAllocation.m_Offset = offset;
2846  m_BlockAllocation.m_CanBecomeLost = canBecomeLost;
2847  }
2848 
2849  void InitLost()
2850  {
2851  VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE);
2852  VMA_ASSERT(m_LastUseFrameIndex.load() == VMA_FRAME_INDEX_LOST);
2853  m_Type = ALLOCATION_TYPE_BLOCK;
2854  m_BlockAllocation.m_hPool = VK_NULL_HANDLE;
2855  m_BlockAllocation.m_Block = VMA_NULL;
2856  m_BlockAllocation.m_Offset = 0;
2857  m_BlockAllocation.m_CanBecomeLost = true;
2858  }
2859 
2860  void ChangeBlockAllocation(
2861  VmaDeviceMemoryBlock* block,
2862  VkDeviceSize offset)
2863  {
2864  VMA_ASSERT(block != VMA_NULL);
2865  VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK);
2866  m_BlockAllocation.m_Block = block;
2867  m_BlockAllocation.m_Offset = offset;
2868  }
2869 
2870  void InitOwnAllocation(
2871  uint32_t memoryTypeIndex,
2872  VkDeviceMemory hMemory,
2873  VmaSuballocationType suballocationType,
2874  bool persistentMap,
2875  void* pMappedData,
2876  VkDeviceSize size,
2877  void* pUserData)
2878  {
2879  VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE);
2880  VMA_ASSERT(hMemory != VK_NULL_HANDLE);
2881  m_Type = ALLOCATION_TYPE_OWN;
2882  m_Alignment = 0;
2883  m_Size = size;
2884  m_pUserData = pUserData;
2885  m_SuballocationType = suballocationType;
2886  m_OwnAllocation.m_MemoryTypeIndex = memoryTypeIndex;
2887  m_OwnAllocation.m_hMemory = hMemory;
2888  m_OwnAllocation.m_PersistentMap = persistentMap;
2889  m_OwnAllocation.m_pMappedData = pMappedData;
2890  }
2891 
2892  ALLOCATION_TYPE GetType() const { return m_Type; }
2893  VkDeviceSize GetAlignment() const { return m_Alignment; }
2894  VkDeviceSize GetSize() const { return m_Size; }
2895  void* GetUserData() const { return m_pUserData; }
2896  void SetUserData(void* pUserData) { m_pUserData = pUserData; }
2897  VmaSuballocationType GetSuballocationType() const { return m_SuballocationType; }
2898 
2899  VmaDeviceMemoryBlock* GetBlock() const
2900  {
2901  VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK);
2902  return m_BlockAllocation.m_Block;
2903  }
2904  VkDeviceSize GetOffset() const;
2905  VkDeviceMemory GetMemory() const;
2906  uint32_t GetMemoryTypeIndex() const;
2907  VMA_BLOCK_VECTOR_TYPE GetBlockVectorType() const;
2908  void* GetMappedData() const;
2909  bool CanBecomeLost() const;
2910  VmaPool GetPool() const;
2911 
2912  VkResult OwnAllocMapPersistentlyMappedMemory(VmaAllocator hAllocator);
2913  void OwnAllocUnmapPersistentlyMappedMemory(VmaAllocator hAllocator);
2914 
2915  uint32_t GetLastUseFrameIndex() const
2916  {
2917  return m_LastUseFrameIndex.load();
2918  }
2919  bool CompareExchangeLastUseFrameIndex(uint32_t& expected, uint32_t desired)
2920  {
2921  return m_LastUseFrameIndex.compare_exchange_weak(expected, desired);
2922  }
2923  /*
2924  - If hAllocation.LastUseFrameIndex + frameInUseCount < allocator.CurrentFrameIndex,
2925  makes it lost by setting LastUseFrameIndex = VMA_FRAME_INDEX_LOST and returns true.
2926  - Else, returns false.
2927 
2928  If hAllocation is already lost, assert - you should not call it then.
2929  If hAllocation was not created with CAN_BECOME_LOST_BIT, assert.
2930  */
2931  bool MakeLost(uint32_t currentFrameIndex, uint32_t frameInUseCount);
2932 
2933  void OwnAllocCalcStatsInfo(VmaStatInfo& outInfo)
2934  {
2935  VMA_ASSERT(m_Type == ALLOCATION_TYPE_OWN);
2936  outInfo.blockCount = 1;
2937  outInfo.allocationCount = 1;
2938  outInfo.unusedRangeCount = 0;
2939  outInfo.usedBytes = m_Size;
2940  outInfo.unusedBytes = 0;
2941  outInfo.allocationSizeMin = outInfo.allocationSizeMax = m_Size;
2942  outInfo.unusedRangeSizeMin = UINT64_MAX;
2943  outInfo.unusedRangeSizeMax = 0;
2944  }
2945 
2946 private:
2947  VkDeviceSize m_Alignment;
2948  VkDeviceSize m_Size;
2949  void* m_pUserData;
2950  ALLOCATION_TYPE m_Type;
2951  VmaSuballocationType m_SuballocationType;
2952  VMA_ATOMIC_UINT32 m_LastUseFrameIndex;
2953 
2954  // Allocation out of VmaDeviceMemoryBlock.
2955  struct BlockAllocation
2956  {
2957  VmaPool m_hPool; // Null if belongs to general memory.
2958  VmaDeviceMemoryBlock* m_Block;
2959  VkDeviceSize m_Offset;
2960  bool m_CanBecomeLost;
2961  };
2962 
2963  // Allocation for an object that has its own private VkDeviceMemory.
2964  struct OwnAllocation
2965  {
2966  uint32_t m_MemoryTypeIndex;
2967  VkDeviceMemory m_hMemory;
2968  bool m_PersistentMap;
2969  void* m_pMappedData;
2970  };
2971 
2972  union
2973  {
2974  // Allocation out of VmaDeviceMemoryBlock.
2975  BlockAllocation m_BlockAllocation;
2976  // Allocation for an object that has its own private VkDeviceMemory.
2977  OwnAllocation m_OwnAllocation;
2978  };
2979 };
2980 
2981 /*
2982 Represents a region of VmaDeviceMemoryBlock that is either assigned and returned as
2983 allocated memory block or free.
2984 */
2985 struct VmaSuballocation
2986 {
2987  VkDeviceSize offset;
2988  VkDeviceSize size;
2989  VmaAllocation hAllocation;
2990  VmaSuballocationType type;
2991 };
2992 
2993 typedef VmaList< VmaSuballocation, VmaStlAllocator<VmaSuballocation> > VmaSuballocationList;
2994 
2995 // Cost of one additional allocation lost, as equivalent in bytes.
2996 static const VkDeviceSize VMA_LOST_ALLOCATION_COST = 1048576;
2997 
2998 /*
2999 Parameters of planned allocation inside a VmaDeviceMemoryBlock.
3000 
3001 If canMakeOtherLost was false:
3002 - item points to a FREE suballocation.
3003 - itemsToMakeLostCount is 0.
3004 
3005 If canMakeOtherLost was true:
3006 - item points to first of sequence of suballocations, which are either FREE,
3007  or point to VmaAllocations that can become lost.
3008 - itemsToMakeLostCount is the number of VmaAllocations that need to be made lost for
3009  the requested allocation to succeed.
3010 */
3011 struct VmaAllocationRequest
3012 {
3013  VkDeviceSize offset;
3014  VkDeviceSize sumFreeSize; // Sum size of free items that overlap with proposed allocation.
3015  VkDeviceSize sumItemSize; // Sum size of items to make lost that overlap with proposed allocation.
3016  VmaSuballocationList::iterator item;
3017  size_t itemsToMakeLostCount;
3018 
3019  VkDeviceSize CalcCost() const
3020  {
3021  return sumItemSize + itemsToMakeLostCount * VMA_LOST_ALLOCATION_COST;
3022  }
3023 };
3024 
3025 /*
3026 Represents a single block of device memory (VkDeviceMemory ) with all the
3027 data about its regions (aka suballocations, VmaAllocation), assigned and free.
3028 
3029 Thread-safety: This class must be externally synchronized.
3030 */
3031 class VmaDeviceMemoryBlock
3032 {
3033 public:
3034  uint32_t m_MemoryTypeIndex;
3035  VMA_BLOCK_VECTOR_TYPE m_BlockVectorType;
3036  VkDeviceMemory m_hMemory;
3037  VkDeviceSize m_Size;
3038  bool m_PersistentMap;
3039  void* m_pMappedData;
3040  uint32_t m_FreeCount;
3041  VkDeviceSize m_SumFreeSize;
3042  VmaSuballocationList m_Suballocations;
3043  // Suballocations that are free and have size greater than certain threshold.
3044  // Sorted by size, ascending.
3045  VmaVector< VmaSuballocationList::iterator, VmaStlAllocator< VmaSuballocationList::iterator > > m_FreeSuballocationsBySize;
3046 
3047  VmaDeviceMemoryBlock(VmaAllocator hAllocator);
3048 
3049  ~VmaDeviceMemoryBlock()
3050  {
3051  VMA_ASSERT(m_hMemory == VK_NULL_HANDLE);
3052  }
3053 
3054  // Always call after construction.
3055  void Init(
3056  uint32_t newMemoryTypeIndex,
3057  VMA_BLOCK_VECTOR_TYPE newBlockVectorType,
3058  VkDeviceMemory newMemory,
3059  VkDeviceSize newSize,
3060  bool persistentMap,
3061  void* pMappedData);
3062  // Always call before destruction.
3063  void Destroy(VmaAllocator allocator);
3064 
3065  // Validates all data structures inside this object. If not valid, returns false.
3066  bool Validate() const;
3067 
3068  VkDeviceSize GetUnusedRangeSizeMax() const;
3069 
3070  // Tries to find a place for suballocation with given parameters inside this allocation.
3071  // If succeeded, fills pAllocationRequest and returns true.
3072  // If failed, returns false.
3073  bool CreateAllocationRequest(
3074  uint32_t currentFrameIndex,
3075  uint32_t frameInUseCount,
3076  VkDeviceSize bufferImageGranularity,
3077  VkDeviceSize allocSize,
3078  VkDeviceSize allocAlignment,
3079  VmaSuballocationType allocType,
3080  bool canMakeOtherLost,
3081  VmaAllocationRequest* pAllocationRequest);
3082 
3083  bool MakeRequestedAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount, VmaAllocationRequest* pAllocationRequest);
3084 
3085  uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount);
3086 
3087  // Returns true if this allocation is empty - contains only single free suballocation.
3088  bool IsEmpty() const;
3089 
3090  // Makes actual allocation based on request. Request must already be checked
3091  // and valid.
3092  void Alloc(
3093  const VmaAllocationRequest& request,
3094  VmaSuballocationType type,
3095  VkDeviceSize allocSize,
3096  VmaAllocation hAllocation);
3097 
3098  // Frees suballocation assigned to given memory region.
3099  void Free(const VmaAllocation allocation);
3100 
3101 #if VMA_STATS_STRING_ENABLED
3102  void PrintDetailedMap(class VmaJsonWriter& json) const;
3103 #endif
3104 
3105 private:
3106  // Checks if requested suballocation with given parameters can be placed in given pFreeSuballocItem.
3107  // If yes, fills pOffset and returns true. If no, returns false.
3108  bool CheckAllocation(
3109  uint32_t currentFrameIndex,
3110  uint32_t frameInUseCount,
3111  VkDeviceSize bufferImageGranularity,
3112  VkDeviceSize allocSize,
3113  VkDeviceSize allocAlignment,
3114  VmaSuballocationType allocType,
3115  VmaSuballocationList::const_iterator suballocItem,
3116  bool canMakeOtherLost,
3117  VkDeviceSize* pOffset,
3118  size_t* itemsToMakeLostCount,
3119  VkDeviceSize* pSumFreeSize,
3120  VkDeviceSize* pSumItemSize) const;
3121 
3122  // Given free suballocation, it merges it with following one, which must also be free.
3123  void MergeFreeWithNext(VmaSuballocationList::iterator item);
3124  // Releases given suballocation, making it free.
3125  // Merges it with adjacent free suballocations if applicable.
3126  // Returns iterator to new free suballocation at this place.
3127  VmaSuballocationList::iterator FreeSuballocation(VmaSuballocationList::iterator suballocItem);
3128  // Given free suballocation, it inserts it into sorted list of
3129  // m_FreeSuballocationsBySize if it's suitable.
3130  void RegisterFreeSuballocation(VmaSuballocationList::iterator item);
3131  // Given free suballocation, it removes it from sorted list of
3132  // m_FreeSuballocationsBySize if it's suitable.
3133  void UnregisterFreeSuballocation(VmaSuballocationList::iterator item);
3134 
3135  bool ValidateFreeSuballocationList() const;
3136 };
3137 
3138 struct VmaPointerLess
3139 {
3140  bool operator()(const void* lhs, const void* rhs) const
3141  {
3142  return lhs < rhs;
3143  }
3144 };
3145 
3146 class VmaDefragmentator;
3147 
3148 /*
3149 Sequence of VmaDeviceMemoryBlock. Represents memory blocks allocated for a specific
3150 Vulkan memory type.
3151 
3152 Synchronized internally with a mutex.
3153 */
3154 struct VmaBlockVector
3155 {
3156  VmaBlockVector(
3157  VmaAllocator hAllocator,
3158  uint32_t memoryTypeIndex,
3159  VMA_BLOCK_VECTOR_TYPE blockVectorType,
3160  VkDeviceSize preferredBlockSize,
3161  size_t minBlockCount,
3162  size_t maxBlockCount,
3163  VkDeviceSize bufferImageGranularity,
3164  uint32_t frameInUseCount,
3165  bool isCustomPool);
3166  ~VmaBlockVector();
3167 
3168  VkResult CreateMinBlocks();
3169 
3170  uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; }
3171  VkDeviceSize GetPreferredBlockSize() const { return m_PreferredBlockSize; }
3172  VkDeviceSize GetBufferImageGranularity() const { return m_BufferImageGranularity; }
3173  uint32_t GetFrameInUseCount() const { return m_FrameInUseCount; }
3174  VMA_BLOCK_VECTOR_TYPE GetBlockVectorType() const { return m_BlockVectorType; }
3175 
3176  void GetPoolStats(VmaPoolStats* pStats);
3177 
3178  bool IsEmpty() const { return m_Blocks.empty(); }
3179 
3180  VkResult Allocate(
3181  VmaPool hCurrentPool,
3182  uint32_t currentFrameIndex,
3183  const VkMemoryRequirements& vkMemReq,
3184  const VmaAllocationCreateInfo& createInfo,
3185  VmaSuballocationType suballocType,
3186  VmaAllocation* pAllocation);
3187 
3188  void Free(
3189  VmaAllocation hAllocation);
3190 
3191  // Adds statistics of this BlockVector to pStats.
3192  void AddStats(VmaStats* pStats);
3193 
3194 #if VMA_STATS_STRING_ENABLED
3195  void PrintDetailedMap(class VmaJsonWriter& json);
3196 #endif
3197 
3198  void UnmapPersistentlyMappedMemory();
3199  VkResult MapPersistentlyMappedMemory();
3200 
3201  void MakePoolAllocationsLost(
3202  uint32_t currentFrameIndex,
3203  size_t* pLostAllocationCount);
3204 
3205  VmaDefragmentator* EnsureDefragmentator(
3206  VmaAllocator hAllocator,
3207  uint32_t currentFrameIndex);
3208 
3209  VkResult Defragment(
3210  VmaDefragmentationStats* pDefragmentationStats,
3211  VkDeviceSize& maxBytesToMove,
3212  uint32_t& maxAllocationsToMove);
3213 
3214  void DestroyDefragmentator();
3215 
3216 private:
3217  friend class VmaDefragmentator;
3218 
3219  const VmaAllocator m_hAllocator;
3220  const uint32_t m_MemoryTypeIndex;
3221  const VMA_BLOCK_VECTOR_TYPE m_BlockVectorType;
3222  const VkDeviceSize m_PreferredBlockSize;
3223  const size_t m_MinBlockCount;
3224  const size_t m_MaxBlockCount;
3225  const VkDeviceSize m_BufferImageGranularity;
3226  const uint32_t m_FrameInUseCount;
3227  const bool m_IsCustomPool;
3228  VMA_MUTEX m_Mutex;
3229  // Incrementally sorted by sumFreeSize, ascending.
3230  VmaVector< VmaDeviceMemoryBlock*, VmaStlAllocator<VmaDeviceMemoryBlock*> > m_Blocks;
3231  /* There can be at most one allocation that is completely empty - a
3232  hysteresis to avoid pessimistic case of alternating creation and destruction
3233  of a VkDeviceMemory. */
3234  bool m_HasEmptyBlock;
3235  VmaDefragmentator* m_pDefragmentator;
3236 
3237  // Finds and removes given block from vector.
3238  void Remove(VmaDeviceMemoryBlock* pBlock);
3239 
3240  // Performs single step in sorting m_Blocks. They may not be fully sorted
3241  // after this call.
3242  void IncrementallySortBlocks();
3243 
3244  VkResult CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex);
3245 };
3246 
3247 struct VmaPool_T
3248 {
3249 public:
3250  VmaBlockVector m_BlockVector;
3251 
3252  // Takes ownership.
3253  VmaPool_T(
3254  VmaAllocator hAllocator,
3255  const VmaPoolCreateInfo& createInfo);
3256  ~VmaPool_T();
3257 
3258  VmaBlockVector& GetBlockVector() { return m_BlockVector; }
3259 
3260 #if VMA_STATS_STRING_ENABLED
3261  //void PrintDetailedMap(class VmaStringBuilder& sb);
3262 #endif
3263 };
3264 
3265 class VmaDefragmentator
3266 {
3267  const VmaAllocator m_hAllocator;
3268  VmaBlockVector* const m_pBlockVector;
3269  uint32_t m_CurrentFrameIndex;
3270  VMA_BLOCK_VECTOR_TYPE m_BlockVectorType;
3271  VkDeviceSize m_BytesMoved;
3272  uint32_t m_AllocationsMoved;
3273 
3274  struct AllocationInfo
3275  {
3276  VmaAllocation m_hAllocation;
3277  VkBool32* m_pChanged;
3278 
3279  AllocationInfo() :
3280  m_hAllocation(VK_NULL_HANDLE),
3281  m_pChanged(VMA_NULL)
3282  {
3283  }
3284  };
3285 
3286  struct AllocationInfoSizeGreater
3287  {
3288  bool operator()(const AllocationInfo& lhs, const AllocationInfo& rhs) const
3289  {
3290  return lhs.m_hAllocation->GetSize() > rhs.m_hAllocation->GetSize();
3291  }
3292  };
3293 
3294  // Used between AddAllocation and Defragment.
3295  VmaVector< AllocationInfo, VmaStlAllocator<AllocationInfo> > m_Allocations;
3296 
3297  struct BlockInfo
3298  {
3299  VmaDeviceMemoryBlock* m_pBlock;
3300  bool m_HasNonMovableAllocations;
3301  VmaVector< AllocationInfo, VmaStlAllocator<AllocationInfo> > m_Allocations;
3302 
3303  BlockInfo(const VkAllocationCallbacks* pAllocationCallbacks) :
3304  m_pBlock(VMA_NULL),
3305  m_HasNonMovableAllocations(true),
3306  m_Allocations(pAllocationCallbacks),
3307  m_pMappedDataForDefragmentation(VMA_NULL)
3308  {
3309  }
3310 
3311  void CalcHasNonMovableAllocations()
3312  {
3313  const size_t blockAllocCount =
3314  m_pBlock->m_Suballocations.size() - m_pBlock->m_FreeCount;
3315  const size_t defragmentAllocCount = m_Allocations.size();
3316  m_HasNonMovableAllocations = blockAllocCount != defragmentAllocCount;
3317  }
3318 
3319  void SortAllocationsBySizeDescecnding()
3320  {
3321  VMA_SORT(m_Allocations.begin(), m_Allocations.end(), AllocationInfoSizeGreater());
3322  }
3323 
3324  VkResult EnsureMapping(VmaAllocator hAllocator, void** ppMappedData);
3325  void Unmap(VmaAllocator hAllocator);
3326 
3327  private:
3328  // Not null if mapped for defragmentation only, not persistently mapped.
3329  void* m_pMappedDataForDefragmentation;
3330  };
3331 
3332  struct BlockPointerLess
3333  {
3334  bool operator()(const BlockInfo* pLhsBlockInfo, const VmaDeviceMemoryBlock* pRhsBlock) const
3335  {
3336  return pLhsBlockInfo->m_pBlock < pRhsBlock;
3337  }
3338  bool operator()(const BlockInfo* pLhsBlockInfo, const BlockInfo* pRhsBlockInfo) const
3339  {
3340  return pLhsBlockInfo->m_pBlock < pRhsBlockInfo->m_pBlock;
3341  }
3342  };
3343 
3344  // 1. Blocks with some non-movable allocations go first.
3345  // 2. Blocks with smaller sumFreeSize go first.
3346  struct BlockInfoCompareMoveDestination
3347  {
3348  bool operator()(const BlockInfo* pLhsBlockInfo, const BlockInfo* pRhsBlockInfo) const
3349  {
3350  if(pLhsBlockInfo->m_HasNonMovableAllocations && !pRhsBlockInfo->m_HasNonMovableAllocations)
3351  {
3352  return true;
3353  }
3354  if(!pLhsBlockInfo->m_HasNonMovableAllocations && pRhsBlockInfo->m_HasNonMovableAllocations)
3355  {
3356  return false;
3357  }
3358  if(pLhsBlockInfo->m_pBlock->m_SumFreeSize < pRhsBlockInfo->m_pBlock->m_SumFreeSize)
3359  {
3360  return true;
3361  }
3362  return false;
3363  }
3364  };
3365 
3366  typedef VmaVector< BlockInfo*, VmaStlAllocator<BlockInfo*> > BlockInfoVector;
3367  BlockInfoVector m_Blocks;
3368 
3369  VkResult DefragmentRound(
3370  VkDeviceSize maxBytesToMove,
3371  uint32_t maxAllocationsToMove);
3372 
3373  static bool MoveMakesSense(
3374  size_t dstBlockIndex, VkDeviceSize dstOffset,
3375  size_t srcBlockIndex, VkDeviceSize srcOffset);
3376 
3377 public:
3378  VmaDefragmentator(
3379  VmaAllocator hAllocator,
3380  VmaBlockVector* pBlockVector,
3381  uint32_t currentFrameIndex);
3382 
3383  ~VmaDefragmentator();
3384 
3385  VkDeviceSize GetBytesMoved() const { return m_BytesMoved; }
3386  uint32_t GetAllocationsMoved() const { return m_AllocationsMoved; }
3387 
3388  void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged);
3389 
3390  VkResult Defragment(
3391  VkDeviceSize maxBytesToMove,
3392  uint32_t maxAllocationsToMove);
3393 };
3394 
3395 // Main allocator object.
3396 struct VmaAllocator_T
3397 {
3398  bool m_UseMutex;
3399  VkDevice m_hDevice;
3400  bool m_AllocationCallbacksSpecified;
3401  VkAllocationCallbacks m_AllocationCallbacks;
3402  VmaDeviceMemoryCallbacks m_DeviceMemoryCallbacks;
3403  // Non-zero when we are inside UnmapPersistentlyMappedMemory...MapPersistentlyMappedMemory.
3404  // Counter to allow nested calls to these functions.
3405  uint32_t m_UnmapPersistentlyMappedMemoryCounter;
3406 
3407  // Number of bytes free out of limit, or VK_WHOLE_SIZE if not limit for that heap.
3408  VkDeviceSize m_HeapSizeLimit[VK_MAX_MEMORY_HEAPS];
3409  VMA_MUTEX m_HeapSizeLimitMutex;
3410 
3411  VkPhysicalDeviceProperties m_PhysicalDeviceProperties;
3412  VkPhysicalDeviceMemoryProperties m_MemProps;
3413 
3414  // Default pools.
3415  VmaBlockVector* m_pBlockVectors[VK_MAX_MEMORY_TYPES][VMA_BLOCK_VECTOR_TYPE_COUNT];
3416 
3417  // Each vector is sorted by memory (handle value).
3418  typedef VmaVector< VmaAllocation, VmaStlAllocator<VmaAllocation> > AllocationVectorType;
3419  AllocationVectorType* m_pOwnAllocations[VK_MAX_MEMORY_TYPES][VMA_BLOCK_VECTOR_TYPE_COUNT];
3420  VMA_MUTEX m_OwnAllocationsMutex[VK_MAX_MEMORY_TYPES];
3421 
3422  VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo);
3423  ~VmaAllocator_T();
3424 
3425  const VkAllocationCallbacks* GetAllocationCallbacks() const
3426  {
3427  return m_AllocationCallbacksSpecified ? &m_AllocationCallbacks : 0;
3428  }
3429  const VmaVulkanFunctions& GetVulkanFunctions() const
3430  {
3431  return m_VulkanFunctions;
3432  }
3433 
3434  VkDeviceSize GetBufferImageGranularity() const
3435  {
3436  return VMA_MAX(
3437  static_cast<VkDeviceSize>(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY),
3438  m_PhysicalDeviceProperties.limits.bufferImageGranularity);
3439  }
3440 
3441  uint32_t GetMemoryHeapCount() const { return m_MemProps.memoryHeapCount; }
3442  uint32_t GetMemoryTypeCount() const { return m_MemProps.memoryTypeCount; }
3443 
3444  uint32_t MemoryTypeIndexToHeapIndex(uint32_t memTypeIndex) const
3445  {
3446  VMA_ASSERT(memTypeIndex < m_MemProps.memoryTypeCount);
3447  return m_MemProps.memoryTypes[memTypeIndex].heapIndex;
3448  }
3449 
3450  // Main allocation function.
3451  VkResult AllocateMemory(
3452  const VkMemoryRequirements& vkMemReq,
3453  const VmaAllocationCreateInfo& createInfo,
3454  VmaSuballocationType suballocType,
3455  VmaAllocation* pAllocation);
3456 
3457  // Main deallocation function.
3458  void FreeMemory(const VmaAllocation allocation);
3459 
3460  void CalculateStats(VmaStats* pStats);
3461 
3462 #if VMA_STATS_STRING_ENABLED
3463  void PrintDetailedMap(class VmaJsonWriter& json);
3464 #endif
3465 
3466  void UnmapPersistentlyMappedMemory();
3467  VkResult MapPersistentlyMappedMemory();
3468 
3469  VkResult Defragment(
3470  VmaAllocation* pAllocations,
3471  size_t allocationCount,
3472  VkBool32* pAllocationsChanged,
3473  const VmaDefragmentationInfo* pDefragmentationInfo,
3474  VmaDefragmentationStats* pDefragmentationStats);
3475 
3476  void GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo);
3477 
3478  VkResult CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool);
3479  void DestroyPool(VmaPool pool);
3480  void GetPoolStats(VmaPool pool, VmaPoolStats* pPoolStats);
3481 
3482  void SetCurrentFrameIndex(uint32_t frameIndex);
3483 
3484  void MakePoolAllocationsLost(
3485  VmaPool hPool,
3486  size_t* pLostAllocationCount);
3487 
3488  void CreateLostAllocation(VmaAllocation* pAllocation);
3489 
3490  VkResult AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory);
3491  void FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory);
3492 
3493 private:
3494  VkDeviceSize m_PreferredLargeHeapBlockSize;
3495  VkDeviceSize m_PreferredSmallHeapBlockSize;
3496 
3497  VkPhysicalDevice m_PhysicalDevice;
3498  VMA_ATOMIC_UINT32 m_CurrentFrameIndex;
3499 
3500  VMA_MUTEX m_PoolsMutex;
3501  // Protected by m_PoolsMutex. Sorted by pointer value.
3502  VmaVector<VmaPool, VmaStlAllocator<VmaPool> > m_Pools;
3503 
3504  VmaVulkanFunctions m_VulkanFunctions;
3505 
3506  void ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions);
3507 
3508  VkDeviceSize CalcPreferredBlockSize(uint32_t memTypeIndex);
3509 
3510  VkResult AllocateMemoryOfType(
3511  const VkMemoryRequirements& vkMemReq,
3512  const VmaAllocationCreateInfo& createInfo,
3513  uint32_t memTypeIndex,
3514  VmaSuballocationType suballocType,
3515  VmaAllocation* pAllocation);
3516 
3517  // Allocates and registers new VkDeviceMemory specifically for single allocation.
3518  VkResult AllocateOwnMemory(
3519  VkDeviceSize size,
3520  VmaSuballocationType suballocType,
3521  uint32_t memTypeIndex,
3522  bool map,
3523  void* pUserData,
3524  VmaAllocation* pAllocation);
3525 
3526  // Tries to free pMemory as Own Memory. Returns true if found and freed.
3527  void FreeOwnMemory(VmaAllocation allocation);
3528 };
3529 
3531 // Memory allocation #2 after VmaAllocator_T definition
3532 
3533 static void* VmaMalloc(VmaAllocator hAllocator, size_t size, size_t alignment)
3534 {
3535  return VmaMalloc(&hAllocator->m_AllocationCallbacks, size, alignment);
3536 }
3537 
3538 static void VmaFree(VmaAllocator hAllocator, void* ptr)
3539 {
3540  VmaFree(&hAllocator->m_AllocationCallbacks, ptr);
3541 }
3542 
3543 template<typename T>
3544 static T* VmaAllocate(VmaAllocator hAllocator)
3545 {
3546  return (T*)VmaMalloc(hAllocator, sizeof(T), VMA_ALIGN_OF(T));
3547 }
3548 
3549 template<typename T>
3550 static T* VmaAllocateArray(VmaAllocator hAllocator, size_t count)
3551 {
3552  return (T*)VmaMalloc(hAllocator, sizeof(T) * count, VMA_ALIGN_OF(T));
3553 }
3554 
3555 template<typename T>
3556 static void vma_delete(VmaAllocator hAllocator, T* ptr)
3557 {
3558  if(ptr != VMA_NULL)
3559  {
3560  ptr->~T();
3561  VmaFree(hAllocator, ptr);
3562  }
3563 }
3564 
3565 template<typename T>
3566 static void vma_delete_array(VmaAllocator hAllocator, T* ptr, size_t count)
3567 {
3568  if(ptr != VMA_NULL)
3569  {
3570  for(size_t i = count; i--; )
3571  ptr[i].~T();
3572  VmaFree(hAllocator, ptr);
3573  }
3574 }
3575 
3577 // VmaStringBuilder
3578 
3579 #if VMA_STATS_STRING_ENABLED
3580 
3581 class VmaStringBuilder
3582 {
3583 public:
3584  VmaStringBuilder(VmaAllocator alloc) : m_Data(VmaStlAllocator<char>(alloc->GetAllocationCallbacks())) { }
3585  size_t GetLength() const { return m_Data.size(); }
3586  const char* GetData() const { return m_Data.data(); }
3587 
3588  void Add(char ch) { m_Data.push_back(ch); }
3589  void Add(const char* pStr);
3590  void AddNewLine() { Add('\n'); }
3591  void AddNumber(uint32_t num);
3592  void AddNumber(uint64_t num);
3593  void AddPointer(const void* ptr);
3594 
3595 private:
3596  VmaVector< char, VmaStlAllocator<char> > m_Data;
3597 };
3598 
3599 void VmaStringBuilder::Add(const char* pStr)
3600 {
3601  const size_t strLen = strlen(pStr);
3602  if(strLen > 0)
3603  {
3604  const size_t oldCount = m_Data.size();
3605  m_Data.resize(oldCount + strLen);
3606  memcpy(m_Data.data() + oldCount, pStr, strLen);
3607  }
3608 }
3609 
3610 void VmaStringBuilder::AddNumber(uint32_t num)
3611 {
3612  char buf[11];
3613  VmaUint32ToStr(buf, sizeof(buf), num);
3614  Add(buf);
3615 }
3616 
3617 void VmaStringBuilder::AddNumber(uint64_t num)
3618 {
3619  char buf[21];
3620  VmaUint64ToStr(buf, sizeof(buf), num);
3621  Add(buf);
3622 }
3623 
3624 void VmaStringBuilder::AddPointer(const void* ptr)
3625 {
3626  char buf[21];
3627  VmaPtrToStr(buf, sizeof(buf), ptr);
3628  Add(buf);
3629 }
3630 
3631 #endif // #if VMA_STATS_STRING_ENABLED
3632 
3634 // VmaJsonWriter
3635 
3636 #if VMA_STATS_STRING_ENABLED
3637 
3638 class VmaJsonWriter
3639 {
3640 public:
3641  VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb);
3642  ~VmaJsonWriter();
3643 
3644  void BeginObject(bool singleLine = false);
3645  void EndObject();
3646 
3647  void BeginArray(bool singleLine = false);
3648  void EndArray();
3649 
3650  void WriteString(const char* pStr);
3651  void BeginString(const char* pStr = VMA_NULL);
3652  void ContinueString(const char* pStr);
3653  void ContinueString(uint32_t n);
3654  void ContinueString(uint64_t n);
3655  void EndString(const char* pStr = VMA_NULL);
3656 
3657  void WriteNumber(uint32_t n);
3658  void WriteNumber(uint64_t n);
3659  void WriteBool(bool b);
3660  void WriteNull();
3661 
3662 private:
3663  static const char* const INDENT;
3664 
3665  enum COLLECTION_TYPE
3666  {
3667  COLLECTION_TYPE_OBJECT,
3668  COLLECTION_TYPE_ARRAY,
3669  };
3670  struct StackItem
3671  {
3672  COLLECTION_TYPE type;
3673  uint32_t valueCount;
3674  bool singleLineMode;
3675  };
3676 
3677  VmaStringBuilder& m_SB;
3678  VmaVector< StackItem, VmaStlAllocator<StackItem> > m_Stack;
3679  bool m_InsideString;
3680 
3681  void BeginValue(bool isString);
3682  void WriteIndent(bool oneLess = false);
3683 };
3684 
3685 const char* const VmaJsonWriter::INDENT = " ";
3686 
3687 VmaJsonWriter::VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb) :
3688  m_SB(sb),
3689  m_Stack(VmaStlAllocator<StackItem>(pAllocationCallbacks)),
3690  m_InsideString(false)
3691 {
3692 }
3693 
3694 VmaJsonWriter::~VmaJsonWriter()
3695 {
3696  VMA_ASSERT(!m_InsideString);
3697  VMA_ASSERT(m_Stack.empty());
3698 }
3699 
3700 void VmaJsonWriter::BeginObject(bool singleLine)
3701 {
3702  VMA_ASSERT(!m_InsideString);
3703 
3704  BeginValue(false);
3705  m_SB.Add('{');
3706 
3707  StackItem item;
3708  item.type = COLLECTION_TYPE_OBJECT;
3709  item.valueCount = 0;
3710  item.singleLineMode = singleLine;
3711  m_Stack.push_back(item);
3712 }
3713 
3714 void VmaJsonWriter::EndObject()
3715 {
3716  VMA_ASSERT(!m_InsideString);
3717 
3718  WriteIndent(true);
3719  m_SB.Add('}');
3720 
3721  VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_OBJECT);
3722  m_Stack.pop_back();
3723 }
3724 
3725 void VmaJsonWriter::BeginArray(bool singleLine)
3726 {
3727  VMA_ASSERT(!m_InsideString);
3728 
3729  BeginValue(false);
3730  m_SB.Add('[');
3731 
3732  StackItem item;
3733  item.type = COLLECTION_TYPE_ARRAY;
3734  item.valueCount = 0;
3735  item.singleLineMode = singleLine;
3736  m_Stack.push_back(item);
3737 }
3738 
3739 void VmaJsonWriter::EndArray()
3740 {
3741  VMA_ASSERT(!m_InsideString);
3742 
3743  WriteIndent(true);
3744  m_SB.Add(']');
3745 
3746  VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_ARRAY);
3747  m_Stack.pop_back();
3748 }
3749 
3750 void VmaJsonWriter::WriteString(const char* pStr)
3751 {
3752  BeginString(pStr);
3753  EndString();
3754 }
3755 
3756 void VmaJsonWriter::BeginString(const char* pStr)
3757 {
3758  VMA_ASSERT(!m_InsideString);
3759 
3760  BeginValue(true);
3761  m_SB.Add('"');
3762  m_InsideString = true;
3763  if(pStr != VMA_NULL && pStr[0] != '\0')
3764  {
3765  ContinueString(pStr);
3766  }
3767 }
3768 
3769 void VmaJsonWriter::ContinueString(const char* pStr)
3770 {
3771  VMA_ASSERT(m_InsideString);
3772 
3773  const size_t strLen = strlen(pStr);
3774  for(size_t i = 0; i < strLen; ++i)
3775  {
3776  char ch = pStr[i];
3777  if(ch == '\'')
3778  {
3779  m_SB.Add("\\\\");
3780  }
3781  else if(ch == '"')
3782  {
3783  m_SB.Add("\\\"");
3784  }
3785  else if(ch >= 32)
3786  {
3787  m_SB.Add(ch);
3788  }
3789  else switch(ch)
3790  {
3791  case '\n':
3792  m_SB.Add("\\n");
3793  break;
3794  case '\r':
3795  m_SB.Add("\\r");
3796  break;
3797  case '\t':
3798  m_SB.Add("\\t");
3799  break;
3800  default:
3801  VMA_ASSERT(0 && "Character not currently supported.");
3802  break;
3803  }
3804  }
3805 }
3806 
3807 void VmaJsonWriter::ContinueString(uint32_t n)
3808 {
3809  VMA_ASSERT(m_InsideString);
3810  m_SB.AddNumber(n);
3811 }
3812 
3813 void VmaJsonWriter::ContinueString(uint64_t n)
3814 {
3815  VMA_ASSERT(m_InsideString);
3816  m_SB.AddNumber(n);
3817 }
3818 
3819 void VmaJsonWriter::EndString(const char* pStr)
3820 {
3821  VMA_ASSERT(m_InsideString);
3822  if(pStr != VMA_NULL && pStr[0] != '\0')
3823  {
3824  ContinueString(pStr);
3825  }
3826  m_SB.Add('"');
3827  m_InsideString = false;
3828 }
3829 
3830 void VmaJsonWriter::WriteNumber(uint32_t n)
3831 {
3832  VMA_ASSERT(!m_InsideString);
3833  BeginValue(false);
3834  m_SB.AddNumber(n);
3835 }
3836 
3837 void VmaJsonWriter::WriteNumber(uint64_t n)
3838 {
3839  VMA_ASSERT(!m_InsideString);
3840  BeginValue(false);
3841  m_SB.AddNumber(n);
3842 }
3843 
3844 void VmaJsonWriter::WriteBool(bool b)
3845 {
3846  VMA_ASSERT(!m_InsideString);
3847  BeginValue(false);
3848  m_SB.Add(b ? "true" : "false");
3849 }
3850 
3851 void VmaJsonWriter::WriteNull()
3852 {
3853  VMA_ASSERT(!m_InsideString);
3854  BeginValue(false);
3855  m_SB.Add("null");
3856 }
3857 
3858 void VmaJsonWriter::BeginValue(bool isString)
3859 {
3860  if(!m_Stack.empty())
3861  {
3862  StackItem& currItem = m_Stack.back();
3863  if(currItem.type == COLLECTION_TYPE_OBJECT &&
3864  currItem.valueCount % 2 == 0)
3865  {
3866  VMA_ASSERT(isString);
3867  }
3868 
3869  if(currItem.type == COLLECTION_TYPE_OBJECT &&
3870  currItem.valueCount % 2 != 0)
3871  {
3872  m_SB.Add(": ");
3873  }
3874  else if(currItem.valueCount > 0)
3875  {
3876  m_SB.Add(", ");
3877  WriteIndent();
3878  }
3879  else
3880  {
3881  WriteIndent();
3882  }
3883  ++currItem.valueCount;
3884  }
3885 }
3886 
3887 void VmaJsonWriter::WriteIndent(bool oneLess)
3888 {
3889  if(!m_Stack.empty() && !m_Stack.back().singleLineMode)
3890  {
3891  m_SB.AddNewLine();
3892 
3893  size_t count = m_Stack.size();
3894  if(count > 0 && oneLess)
3895  {
3896  --count;
3897  }
3898  for(size_t i = 0; i < count; ++i)
3899  {
3900  m_SB.Add(INDENT);
3901  }
3902  }
3903 }
3904 
3905 #endif // #if VMA_STATS_STRING_ENABLED
3906 
3908 
3909 VkDeviceSize VmaAllocation_T::GetOffset() const
3910 {
3911  switch(m_Type)
3912  {
3913  case ALLOCATION_TYPE_BLOCK:
3914  return m_BlockAllocation.m_Offset;
3915  case ALLOCATION_TYPE_OWN:
3916  return 0;
3917  default:
3918  VMA_ASSERT(0);
3919  return 0;
3920  }
3921 }
3922 
3923 VkDeviceMemory VmaAllocation_T::GetMemory() const
3924 {
3925  switch(m_Type)
3926  {
3927  case ALLOCATION_TYPE_BLOCK:
3928  return m_BlockAllocation.m_Block->m_hMemory;
3929  case ALLOCATION_TYPE_OWN:
3930  return m_OwnAllocation.m_hMemory;
3931  default:
3932  VMA_ASSERT(0);
3933  return VK_NULL_HANDLE;
3934  }
3935 }
3936 
3937 uint32_t VmaAllocation_T::GetMemoryTypeIndex() const
3938 {
3939  switch(m_Type)
3940  {
3941  case ALLOCATION_TYPE_BLOCK:
3942  return m_BlockAllocation.m_Block->m_MemoryTypeIndex;
3943  case ALLOCATION_TYPE_OWN:
3944  return m_OwnAllocation.m_MemoryTypeIndex;
3945  default:
3946  VMA_ASSERT(0);
3947  return UINT32_MAX;
3948  }
3949 }
3950 
3951 VMA_BLOCK_VECTOR_TYPE VmaAllocation_T::GetBlockVectorType() const
3952 {
3953  switch(m_Type)
3954  {
3955  case ALLOCATION_TYPE_BLOCK:
3956  return m_BlockAllocation.m_Block->m_BlockVectorType;
3957  case ALLOCATION_TYPE_OWN:
3958  return (m_OwnAllocation.m_PersistentMap ? VMA_BLOCK_VECTOR_TYPE_MAPPED : VMA_BLOCK_VECTOR_TYPE_UNMAPPED);
3959  default:
3960  VMA_ASSERT(0);
3961  return VMA_BLOCK_VECTOR_TYPE_COUNT;
3962  }
3963 }
3964 
3965 void* VmaAllocation_T::GetMappedData() const
3966 {
3967  switch(m_Type)
3968  {
3969  case ALLOCATION_TYPE_BLOCK:
3970  if(m_BlockAllocation.m_Block->m_pMappedData != VMA_NULL)
3971  {
3972  return (char*)m_BlockAllocation.m_Block->m_pMappedData + m_BlockAllocation.m_Offset;
3973  }
3974  else
3975  {
3976  return VMA_NULL;
3977  }
3978  break;
3979  case ALLOCATION_TYPE_OWN:
3980  return m_OwnAllocation.m_pMappedData;
3981  default:
3982  VMA_ASSERT(0);
3983  return VMA_NULL;
3984  }
3985 }
3986 
3987 bool VmaAllocation_T::CanBecomeLost() const
3988 {
3989  switch(m_Type)
3990  {
3991  case ALLOCATION_TYPE_BLOCK:
3992  return m_BlockAllocation.m_CanBecomeLost;
3993  case ALLOCATION_TYPE_OWN:
3994  return false;
3995  default:
3996  VMA_ASSERT(0);
3997  return false;
3998  }
3999 }
4000 
4001 VmaPool VmaAllocation_T::GetPool() const
4002 {
4003  VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK);
4004  return m_BlockAllocation.m_hPool;
4005 }
4006 
4007 VkResult VmaAllocation_T::OwnAllocMapPersistentlyMappedMemory(VmaAllocator hAllocator)
4008 {
4009  VMA_ASSERT(m_Type == ALLOCATION_TYPE_OWN);
4010  if(m_OwnAllocation.m_PersistentMap)
4011  {
4012  return (*hAllocator->GetVulkanFunctions().vkMapMemory)(
4013  hAllocator->m_hDevice,
4014  m_OwnAllocation.m_hMemory,
4015  0,
4016  VK_WHOLE_SIZE,
4017  0,
4018  &m_OwnAllocation.m_pMappedData);
4019  }
4020  return VK_SUCCESS;
4021 }
4022 void VmaAllocation_T::OwnAllocUnmapPersistentlyMappedMemory(VmaAllocator hAllocator)
4023 {
4024  VMA_ASSERT(m_Type == ALLOCATION_TYPE_OWN);
4025  if(m_OwnAllocation.m_pMappedData)
4026  {
4027  VMA_ASSERT(m_OwnAllocation.m_PersistentMap);
4028  (*hAllocator->GetVulkanFunctions().vkUnmapMemory)(hAllocator->m_hDevice, m_OwnAllocation.m_hMemory);
4029  m_OwnAllocation.m_pMappedData = VMA_NULL;
4030  }
4031 }
4032 
4033 
4034 bool VmaAllocation_T::MakeLost(uint32_t currentFrameIndex, uint32_t frameInUseCount)
4035 {
4036  VMA_ASSERT(CanBecomeLost());
4037 
4038  /*
4039  Warning: This is a carefully designed algorithm.
4040  Do not modify unless you really know what you're doing :)
4041  */
4042  uint32_t localLastUseFrameIndex = GetLastUseFrameIndex();
4043  for(;;)
4044  {
4045  if(localLastUseFrameIndex == VMA_FRAME_INDEX_LOST)
4046  {
4047  VMA_ASSERT(0);
4048  return false;
4049  }
4050  else if(localLastUseFrameIndex + frameInUseCount >= currentFrameIndex)
4051  {
4052  return false;
4053  }
4054  else // Last use time earlier than current time.
4055  {
4056  if(CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, VMA_FRAME_INDEX_LOST))
4057  {
4058  // Setting hAllocation.LastUseFrameIndex atomic to VMA_FRAME_INDEX_LOST is enough to mark it as LOST.
4059  // Calling code just needs to unregister this allocation in owning VmaDeviceMemoryBlock.
4060  return true;
4061  }
4062  }
4063  }
4064 }
4065 
4066 #if VMA_STATS_STRING_ENABLED
4067 
4068 // Correspond to values of enum VmaSuballocationType.
4069 static const char* VMA_SUBALLOCATION_TYPE_NAMES[] = {
4070  "FREE",
4071  "UNKNOWN",
4072  "BUFFER",
4073  "IMAGE_UNKNOWN",
4074  "IMAGE_LINEAR",
4075  "IMAGE_OPTIMAL",
4076 };
4077 
4078 static void VmaPrintStatInfo(VmaJsonWriter& json, const VmaStatInfo& stat)
4079 {
4080  json.BeginObject();
4081 
4082  json.WriteString("Blocks");
4083  json.WriteNumber(stat.blockCount);
4084 
4085  json.WriteString("Allocations");
4086  json.WriteNumber(stat.allocationCount);
4087 
4088  json.WriteString("UnusedRanges");
4089  json.WriteNumber(stat.unusedRangeCount);
4090 
4091  json.WriteString("UsedBytes");
4092  json.WriteNumber(stat.usedBytes);
4093 
4094  json.WriteString("UnusedBytes");
4095  json.WriteNumber(stat.unusedBytes);
4096 
4097  if(stat.allocationCount > 1)
4098  {
4099  json.WriteString("AllocationSize");
4100  json.BeginObject(true);
4101  json.WriteString("Min");
4102  json.WriteNumber(stat.allocationSizeMin);
4103  json.WriteString("Avg");
4104  json.WriteNumber(stat.allocationSizeAvg);
4105  json.WriteString("Max");
4106  json.WriteNumber(stat.allocationSizeMax);
4107  json.EndObject();
4108  }
4109 
4110  if(stat.unusedRangeCount > 1)
4111  {
4112  json.WriteString("UnusedRangeSize");
4113  json.BeginObject(true);
4114  json.WriteString("Min");
4115  json.WriteNumber(stat.unusedRangeSizeMin);
4116  json.WriteString("Avg");
4117  json.WriteNumber(stat.unusedRangeSizeAvg);
4118  json.WriteString("Max");
4119  json.WriteNumber(stat.unusedRangeSizeMax);
4120  json.EndObject();
4121  }
4122 
4123  json.EndObject();
4124 }
4125 
4126 #endif // #if VMA_STATS_STRING_ENABLED
4127 
4128 struct VmaSuballocationItemSizeLess
4129 {
4130  bool operator()(
4131  const VmaSuballocationList::iterator lhs,
4132  const VmaSuballocationList::iterator rhs) const
4133  {
4134  return lhs->size < rhs->size;
4135  }
4136  bool operator()(
4137  const VmaSuballocationList::iterator lhs,
4138  VkDeviceSize rhsSize) const
4139  {
4140  return lhs->size < rhsSize;
4141  }
4142 };
4143 
4144 VmaDeviceMemoryBlock::VmaDeviceMemoryBlock(VmaAllocator hAllocator) :
4145  m_MemoryTypeIndex(UINT32_MAX),
4146  m_BlockVectorType(VMA_BLOCK_VECTOR_TYPE_COUNT),
4147  m_hMemory(VK_NULL_HANDLE),
4148  m_Size(0),
4149  m_PersistentMap(false),
4150  m_pMappedData(VMA_NULL),
4151  m_FreeCount(0),
4152  m_SumFreeSize(0),
4153  m_Suballocations(VmaStlAllocator<VmaSuballocation>(hAllocator->GetAllocationCallbacks())),
4154  m_FreeSuballocationsBySize(VmaStlAllocator<VmaSuballocationList::iterator>(hAllocator->GetAllocationCallbacks()))
4155 {
4156 }
4157 
4158 void VmaDeviceMemoryBlock::Init(
4159  uint32_t newMemoryTypeIndex,
4160  VMA_BLOCK_VECTOR_TYPE newBlockVectorType,
4161  VkDeviceMemory newMemory,
4162  VkDeviceSize newSize,
4163  bool persistentMap,
4164  void* pMappedData)
4165 {
4166  VMA_ASSERT(m_hMemory == VK_NULL_HANDLE);
4167 
4168  m_MemoryTypeIndex = newMemoryTypeIndex;
4169  m_BlockVectorType = newBlockVectorType;
4170  m_hMemory = newMemory;
4171  m_Size = newSize;
4172  m_PersistentMap = persistentMap;
4173  m_pMappedData = pMappedData;
4174  m_FreeCount = 1;
4175  m_SumFreeSize = newSize;
4176 
4177  m_Suballocations.clear();
4178  m_FreeSuballocationsBySize.clear();
4179 
4180  VmaSuballocation suballoc = {};
4181  suballoc.offset = 0;
4182  suballoc.size = newSize;
4183  suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
4184  suballoc.hAllocation = VK_NULL_HANDLE;
4185 
4186  m_Suballocations.push_back(suballoc);
4187  VmaSuballocationList::iterator suballocItem = m_Suballocations.end();
4188  --suballocItem;
4189  m_FreeSuballocationsBySize.push_back(suballocItem);
4190 }
4191 
4192 void VmaDeviceMemoryBlock::Destroy(VmaAllocator allocator)
4193 {
4194  // This is the most important assert in the entire library.
4195  // Hitting it means you have some memory leak - unreleased VmaAllocation objects.
4196  VMA_ASSERT(IsEmpty() && "Some allocations were not freed before destruction of this memory block!");
4197 
4198  VMA_ASSERT(m_hMemory != VK_NULL_HANDLE);
4199  if(m_pMappedData != VMA_NULL)
4200  {
4201  (allocator->GetVulkanFunctions().vkUnmapMemory)(allocator->m_hDevice, m_hMemory);
4202  m_pMappedData = VMA_NULL;
4203  }
4204 
4205  allocator->FreeVulkanMemory(m_MemoryTypeIndex, m_Size, m_hMemory);
4206  m_hMemory = VK_NULL_HANDLE;
4207 }
4208 
4209 bool VmaDeviceMemoryBlock::Validate() const
4210 {
4211  if((m_hMemory == VK_NULL_HANDLE) ||
4212  (m_Size == 0) ||
4213  m_Suballocations.empty())
4214  {
4215  return false;
4216  }
4217 
4218  // Expected offset of new suballocation as calculates from previous ones.
4219  VkDeviceSize calculatedOffset = 0;
4220  // Expected number of free suballocations as calculated from traversing their list.
4221  uint32_t calculatedFreeCount = 0;
4222  // Expected sum size of free suballocations as calculated from traversing their list.
4223  VkDeviceSize calculatedSumFreeSize = 0;
4224  // Expected number of free suballocations that should be registered in
4225  // m_FreeSuballocationsBySize calculated from traversing their list.
4226  size_t freeSuballocationsToRegister = 0;
4227  // True if previous visisted suballocation was free.
4228  bool prevFree = false;
4229 
4230  for(VmaSuballocationList::const_iterator suballocItem = m_Suballocations.cbegin();
4231  suballocItem != m_Suballocations.cend();
4232  ++suballocItem)
4233  {
4234  const VmaSuballocation& subAlloc = *suballocItem;
4235 
4236  // Actual offset of this suballocation doesn't match expected one.
4237  if(subAlloc.offset != calculatedOffset)
4238  {
4239  return false;
4240  }
4241 
4242  const bool currFree = (subAlloc.type == VMA_SUBALLOCATION_TYPE_FREE);
4243  // Two adjacent free suballocations are invalid. They should be merged.
4244  if(prevFree && currFree)
4245  {
4246  return false;
4247  }
4248  prevFree = currFree;
4249 
4250  if(currFree != (subAlloc.hAllocation == VK_NULL_HANDLE))
4251  {
4252  return false;
4253  }
4254 
4255  if(currFree)
4256  {
4257  calculatedSumFreeSize += subAlloc.size;
4258  ++calculatedFreeCount;
4259  if(subAlloc.size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)
4260  {
4261  ++freeSuballocationsToRegister;
4262  }
4263  }
4264 
4265  calculatedOffset += subAlloc.size;
4266  }
4267 
4268  // Number of free suballocations registered in m_FreeSuballocationsBySize doesn't
4269  // match expected one.
4270  if(m_FreeSuballocationsBySize.size() != freeSuballocationsToRegister)
4271  {
4272  return false;
4273  }
4274 
4275  VkDeviceSize lastSize = 0;
4276  for(size_t i = 0; i < m_FreeSuballocationsBySize.size(); ++i)
4277  {
4278  VmaSuballocationList::iterator suballocItem = m_FreeSuballocationsBySize[i];
4279 
4280  // Only free suballocations can be registered in m_FreeSuballocationsBySize.
4281  if(suballocItem->type != VMA_SUBALLOCATION_TYPE_FREE)
4282  {
4283  return false;
4284  }
4285  // They must be sorted by size ascending.
4286  if(suballocItem->size < lastSize)
4287  {
4288  return false;
4289  }
4290 
4291  lastSize = suballocItem->size;
4292  }
4293 
4294  // Check if totals match calculacted values.
4295  return
4296  (calculatedOffset == m_Size) &&
4297  (calculatedSumFreeSize == m_SumFreeSize) &&
4298  (calculatedFreeCount == m_FreeCount);
4299 }
4300 
4301 VkDeviceSize VmaDeviceMemoryBlock::GetUnusedRangeSizeMax() const
4302 {
4303  if(!m_FreeSuballocationsBySize.empty())
4304  {
4305  return m_FreeSuballocationsBySize.back()->size;
4306  }
4307  else
4308  {
4309  return 0;
4310  }
4311 }
4312 
4313 /*
4314 How many suitable free suballocations to analyze before choosing best one.
4315 - Set to 1 to use First-Fit algorithm - first suitable free suballocation will
4316  be chosen.
4317 - Set to UINT32_MAX to use Best-Fit/Worst-Fit algorithm - all suitable free
4318  suballocations will be analized and best one will be chosen.
4319 - Any other value is also acceptable.
4320 */
4321 //static const uint32_t MAX_SUITABLE_SUBALLOCATIONS_TO_CHECK = 8;
4322 
4323 bool VmaDeviceMemoryBlock::CreateAllocationRequest(
4324  uint32_t currentFrameIndex,
4325  uint32_t frameInUseCount,
4326  VkDeviceSize bufferImageGranularity,
4327  VkDeviceSize allocSize,
4328  VkDeviceSize allocAlignment,
4329  VmaSuballocationType allocType,
4330  bool canMakeOtherLost,
4331  VmaAllocationRequest* pAllocationRequest)
4332 {
4333  VMA_ASSERT(allocSize > 0);
4334  VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE);
4335  VMA_ASSERT(pAllocationRequest != VMA_NULL);
4336  VMA_HEAVY_ASSERT(Validate());
4337 
4338  // There is not enough total free space in this block to fullfill the request: Early return.
4339  if(canMakeOtherLost == false && m_SumFreeSize < allocSize)
4340  {
4341  return false;
4342  }
4343 
4344  // New algorithm, efficiently searching freeSuballocationsBySize.
4345  const size_t freeSuballocCount = m_FreeSuballocationsBySize.size();
4346  if(freeSuballocCount > 0)
4347  {
4348  if(VMA_BEST_FIT)
4349  {
4350  // Find first free suballocation with size not less than allocSize.
4351  VmaSuballocationList::iterator* const it = VmaBinaryFindFirstNotLess(
4352  m_FreeSuballocationsBySize.data(),
4353  m_FreeSuballocationsBySize.data() + freeSuballocCount,
4354  allocSize,
4355  VmaSuballocationItemSizeLess());
4356  size_t index = it - m_FreeSuballocationsBySize.data();
4357  for(; index < freeSuballocCount; ++index)
4358  {
4359  if(CheckAllocation(
4360  currentFrameIndex,
4361  frameInUseCount,
4362  bufferImageGranularity,
4363  allocSize,
4364  allocAlignment,
4365  allocType,
4366  m_FreeSuballocationsBySize[index],
4367  false, // canMakeOtherLost
4368  &pAllocationRequest->offset,
4369  &pAllocationRequest->itemsToMakeLostCount,
4370  &pAllocationRequest->sumFreeSize,
4371  &pAllocationRequest->sumItemSize))
4372  {
4373  pAllocationRequest->item = m_FreeSuballocationsBySize[index];
4374  return true;
4375  }
4376  }
4377  }
4378  else
4379  {
4380  // Search staring from biggest suballocations.
4381  for(size_t index = freeSuballocCount; index--; )
4382  {
4383  if(CheckAllocation(
4384  currentFrameIndex,
4385  frameInUseCount,
4386  bufferImageGranularity,
4387  allocSize,
4388  allocAlignment,
4389  allocType,
4390  m_FreeSuballocationsBySize[index],
4391  false, // canMakeOtherLost
4392  &pAllocationRequest->offset,
4393  &pAllocationRequest->itemsToMakeLostCount,
4394  &pAllocationRequest->sumFreeSize,
4395  &pAllocationRequest->sumItemSize))
4396  {
4397  pAllocationRequest->item = m_FreeSuballocationsBySize[index];
4398  return true;
4399  }
4400  }
4401  }
4402  }
4403 
4404  if(canMakeOtherLost)
4405  {
4406  // Brute-force algorithm. TODO: Come up with something better.
4407 
4408  pAllocationRequest->sumFreeSize = VK_WHOLE_SIZE;
4409  pAllocationRequest->sumItemSize = VK_WHOLE_SIZE;
4410 
4411  VmaAllocationRequest tmpAllocRequest = {};
4412  for(VmaSuballocationList::iterator suballocIt = m_Suballocations.begin();
4413  suballocIt != m_Suballocations.end();
4414  ++suballocIt)
4415  {
4416  if(suballocIt->type == VMA_SUBALLOCATION_TYPE_FREE ||
4417  suballocIt->hAllocation->CanBecomeLost())
4418  {
4419  if(CheckAllocation(
4420  currentFrameIndex,
4421  frameInUseCount,
4422  bufferImageGranularity,
4423  allocSize,
4424  allocAlignment,
4425  allocType,
4426  suballocIt,
4427  canMakeOtherLost,
4428  &tmpAllocRequest.offset,
4429  &tmpAllocRequest.itemsToMakeLostCount,
4430  &tmpAllocRequest.sumFreeSize,
4431  &tmpAllocRequest.sumItemSize))
4432  {
4433  tmpAllocRequest.item = suballocIt;
4434 
4435  if(tmpAllocRequest.CalcCost() < pAllocationRequest->CalcCost())
4436  {
4437  *pAllocationRequest = tmpAllocRequest;
4438  }
4439  }
4440  }
4441  }
4442 
4443  if(pAllocationRequest->sumItemSize != VK_WHOLE_SIZE)
4444  {
4445  return true;
4446  }
4447  }
4448 
4449  return false;
4450 }
4451 
4452 bool VmaDeviceMemoryBlock::MakeRequestedAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount, VmaAllocationRequest* pAllocationRequest)
4453 {
4454  while(pAllocationRequest->itemsToMakeLostCount > 0)
4455  {
4456  if(pAllocationRequest->item->type == VMA_SUBALLOCATION_TYPE_FREE)
4457  {
4458  ++pAllocationRequest->item;
4459  }
4460  VMA_ASSERT(pAllocationRequest->item != m_Suballocations.end());
4461  VMA_ASSERT(pAllocationRequest->item->hAllocation != VK_NULL_HANDLE);
4462  VMA_ASSERT(pAllocationRequest->item->hAllocation->CanBecomeLost());
4463  if(pAllocationRequest->item->hAllocation->MakeLost(currentFrameIndex, frameInUseCount))
4464  {
4465  pAllocationRequest->item = FreeSuballocation(pAllocationRequest->item);
4466  --pAllocationRequest->itemsToMakeLostCount;
4467  }
4468  else
4469  {
4470  return false;
4471  }
4472  }
4473 
4474  VMA_HEAVY_ASSERT(Validate());
4475  VMA_ASSERT(pAllocationRequest->item != m_Suballocations.end());
4476  VMA_ASSERT(pAllocationRequest->item->type == VMA_SUBALLOCATION_TYPE_FREE);
4477 
4478  return true;
4479 }
4480 
4481 uint32_t VmaDeviceMemoryBlock::MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount)
4482 {
4483  uint32_t lostAllocationCount = 0;
4484  for(VmaSuballocationList::iterator it = m_Suballocations.begin();
4485  it != m_Suballocations.end();
4486  ++it)
4487  {
4488  if(it->type != VMA_SUBALLOCATION_TYPE_FREE &&
4489  it->hAllocation->CanBecomeLost() &&
4490  it->hAllocation->MakeLost(currentFrameIndex, frameInUseCount))
4491  {
4492  it = FreeSuballocation(it);
4493  ++lostAllocationCount;
4494  }
4495  }
4496  return lostAllocationCount;
4497 }
4498 
4499 bool VmaDeviceMemoryBlock::CheckAllocation(
4500  uint32_t currentFrameIndex,
4501  uint32_t frameInUseCount,
4502  VkDeviceSize bufferImageGranularity,
4503  VkDeviceSize allocSize,
4504  VkDeviceSize allocAlignment,
4505  VmaSuballocationType allocType,
4506  VmaSuballocationList::const_iterator suballocItem,
4507  bool canMakeOtherLost,
4508  VkDeviceSize* pOffset,
4509  size_t* itemsToMakeLostCount,
4510  VkDeviceSize* pSumFreeSize,
4511  VkDeviceSize* pSumItemSize) const
4512 {
4513  VMA_ASSERT(allocSize > 0);
4514  VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE);
4515  VMA_ASSERT(suballocItem != m_Suballocations.cend());
4516  VMA_ASSERT(pOffset != VMA_NULL);
4517 
4518  *itemsToMakeLostCount = 0;
4519  *pSumFreeSize = 0;
4520  *pSumItemSize = 0;
4521 
4522  if(canMakeOtherLost)
4523  {
4524  if(suballocItem->type == VMA_SUBALLOCATION_TYPE_FREE)
4525  {
4526  *pSumFreeSize = suballocItem->size;
4527  }
4528  else
4529  {
4530  if(suballocItem->hAllocation->CanBecomeLost() &&
4531  suballocItem->hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex)
4532  {
4533  ++*itemsToMakeLostCount;
4534  *pSumItemSize = suballocItem->size;
4535  }
4536  else
4537  {
4538  return false;
4539  }
4540  }
4541 
4542  // Remaining size is too small for this request: Early return.
4543  if(m_Size - suballocItem->offset < allocSize)
4544  {
4545  return false;
4546  }
4547 
4548  // Start from offset equal to beginning of this suballocation.
4549  *pOffset = suballocItem->offset;
4550 
4551  // Apply VMA_DEBUG_MARGIN at the beginning.
4552  if((VMA_DEBUG_MARGIN > 0) && suballocItem != m_Suballocations.cbegin())
4553  {
4554  *pOffset += VMA_DEBUG_MARGIN;
4555  }
4556 
4557  // Apply alignment.
4558  const VkDeviceSize alignment = VMA_MAX(allocAlignment, static_cast<VkDeviceSize>(VMA_DEBUG_ALIGNMENT));
4559  *pOffset = VmaAlignUp(*pOffset, alignment);
4560 
4561  // Check previous suballocations for BufferImageGranularity conflicts.
4562  // Make bigger alignment if necessary.
4563  if(bufferImageGranularity > 1)
4564  {
4565  bool bufferImageGranularityConflict = false;
4566  VmaSuballocationList::const_iterator prevSuballocItem = suballocItem;
4567  while(prevSuballocItem != m_Suballocations.cbegin())
4568  {
4569  --prevSuballocItem;
4570  const VmaSuballocation& prevSuballoc = *prevSuballocItem;
4571  if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, *pOffset, bufferImageGranularity))
4572  {
4573  if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType))
4574  {
4575  bufferImageGranularityConflict = true;
4576  break;
4577  }
4578  }
4579  else
4580  // Already on previous page.
4581  break;
4582  }
4583  if(bufferImageGranularityConflict)
4584  {
4585  *pOffset = VmaAlignUp(*pOffset, bufferImageGranularity);
4586  }
4587  }
4588 
4589  // Now that we have final *pOffset, check if we are past suballocItem.
4590  // If yes, return false - this function should be called for another suballocItem as starting point.
4591  if(*pOffset >= suballocItem->offset + suballocItem->size)
4592  {
4593  return false;
4594  }
4595 
4596  // Calculate padding at the beginning based on current offset.
4597  const VkDeviceSize paddingBegin = *pOffset - suballocItem->offset;
4598 
4599  // Calculate required margin at the end if this is not last suballocation.
4600  VmaSuballocationList::const_iterator next = suballocItem;
4601  ++next;
4602  const VkDeviceSize requiredEndMargin =
4603  (next != m_Suballocations.cend()) ? VMA_DEBUG_MARGIN : 0;
4604 
4605  const VkDeviceSize totalSize = paddingBegin + allocSize + requiredEndMargin;
4606  // Another early return check.
4607  if(suballocItem->offset + totalSize > m_Size)
4608  {
4609  return false;
4610  }
4611 
4612  // Advance lastSuballocItem until desired size is reached.
4613  // Update itemsToMakeLostCount.
4614  VmaSuballocationList::const_iterator lastSuballocItem = suballocItem;
4615  if(totalSize > suballocItem->size)
4616  {
4617  VkDeviceSize remainingSize = totalSize - suballocItem->size;
4618  while(remainingSize > 0)
4619  {
4620  ++lastSuballocItem;
4621  if(lastSuballocItem == m_Suballocations.cend())
4622  {
4623  return false;
4624  }
4625  if(lastSuballocItem->type == VMA_SUBALLOCATION_TYPE_FREE)
4626  {
4627  *pSumFreeSize += lastSuballocItem->size;
4628  }
4629  else
4630  {
4631  VMA_ASSERT(lastSuballocItem->hAllocation != VK_NULL_HANDLE);
4632  if(lastSuballocItem->hAllocation->CanBecomeLost() &&
4633  lastSuballocItem->hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex)
4634  {
4635  ++*itemsToMakeLostCount;
4636  *pSumItemSize += lastSuballocItem->size;
4637  }
4638  else
4639  {
4640  return false;
4641  }
4642  }
4643  remainingSize = (lastSuballocItem->size < remainingSize) ?
4644  remainingSize - lastSuballocItem->size : 0;
4645  }
4646  }
4647 
4648  // Check next suballocations for BufferImageGranularity conflicts.
4649  // If conflict exists, we must mark more allocations lost or fail.
4650  if(bufferImageGranularity > 1)
4651  {
4652  VmaSuballocationList::const_iterator nextSuballocItem = lastSuballocItem;
4653  ++nextSuballocItem;
4654  while(nextSuballocItem != m_Suballocations.cend())
4655  {
4656  const VmaSuballocation& nextSuballoc = *nextSuballocItem;
4657  if(VmaBlocksOnSamePage(*pOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))
4658  {
4659  if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type))
4660  {
4661  VMA_ASSERT(nextSuballoc.hAllocation != VK_NULL_HANDLE);
4662  if(nextSuballoc.hAllocation->CanBecomeLost() &&
4663  nextSuballoc.hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex)
4664  {
4665  ++*itemsToMakeLostCount;
4666  }
4667  else
4668  {
4669  return false;
4670  }
4671  }
4672  }
4673  else
4674  {
4675  // Already on next page.
4676  break;
4677  }
4678  ++nextSuballocItem;
4679  }
4680  }
4681  }
4682  else
4683  {
4684  const VmaSuballocation& suballoc = *suballocItem;
4685  VMA_ASSERT(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
4686 
4687  *pSumFreeSize = suballoc.size;
4688 
4689  // Size of this suballocation is too small for this request: Early return.
4690  if(suballoc.size < allocSize)
4691  {
4692  return false;
4693  }
4694 
4695  // Start from offset equal to beginning of this suballocation.
4696  *pOffset = suballoc.offset;
4697 
4698  // Apply VMA_DEBUG_MARGIN at the beginning.
4699  if((VMA_DEBUG_MARGIN > 0) && suballocItem != m_Suballocations.cbegin())
4700  {
4701  *pOffset += VMA_DEBUG_MARGIN;
4702  }
4703 
4704  // Apply alignment.
4705  const VkDeviceSize alignment = VMA_MAX(allocAlignment, static_cast<VkDeviceSize>(VMA_DEBUG_ALIGNMENT));
4706  *pOffset = VmaAlignUp(*pOffset, alignment);
4707 
4708  // Check previous suballocations for BufferImageGranularity conflicts.
4709  // Make bigger alignment if necessary.
4710  if(bufferImageGranularity > 1)
4711  {
4712  bool bufferImageGranularityConflict = false;
4713  VmaSuballocationList::const_iterator prevSuballocItem = suballocItem;
4714  while(prevSuballocItem != m_Suballocations.cbegin())
4715  {
4716  --prevSuballocItem;
4717  const VmaSuballocation& prevSuballoc = *prevSuballocItem;
4718  if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, *pOffset, bufferImageGranularity))
4719  {
4720  if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType))
4721  {
4722  bufferImageGranularityConflict = true;
4723  break;
4724  }
4725  }
4726  else
4727  // Already on previous page.
4728  break;
4729  }
4730  if(bufferImageGranularityConflict)
4731  {
4732  *pOffset = VmaAlignUp(*pOffset, bufferImageGranularity);
4733  }
4734  }
4735 
4736  // Calculate padding at the beginning based on current offset.
4737  const VkDeviceSize paddingBegin = *pOffset - suballoc.offset;
4738 
4739  // Calculate required margin at the end if this is not last suballocation.
4740  VmaSuballocationList::const_iterator next = suballocItem;
4741  ++next;
4742  const VkDeviceSize requiredEndMargin =
4743  (next != m_Suballocations.cend()) ? VMA_DEBUG_MARGIN : 0;
4744 
4745  // Fail if requested size plus margin before and after is bigger than size of this suballocation.
4746  if(paddingBegin + allocSize + requiredEndMargin > suballoc.size)
4747  {
4748  return false;
4749  }
4750 
4751  // Check next suballocations for BufferImageGranularity conflicts.
4752  // If conflict exists, allocation cannot be made here.
4753  if(bufferImageGranularity > 1)
4754  {
4755  VmaSuballocationList::const_iterator nextSuballocItem = suballocItem;
4756  ++nextSuballocItem;
4757  while(nextSuballocItem != m_Suballocations.cend())
4758  {
4759  const VmaSuballocation& nextSuballoc = *nextSuballocItem;
4760  if(VmaBlocksOnSamePage(*pOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))
4761  {
4762  if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type))
4763  {
4764  return false;
4765  }
4766  }
4767  else
4768  {
4769  // Already on next page.
4770  break;
4771  }
4772  ++nextSuballocItem;
4773  }
4774  }
4775  }
4776 
4777  // All tests passed: Success. pOffset is already filled.
4778  return true;
4779 }
4780 
4781 bool VmaDeviceMemoryBlock::IsEmpty() const
4782 {
4783  return (m_Suballocations.size() == 1) && (m_FreeCount == 1);
4784 }
4785 
4786 void VmaDeviceMemoryBlock::Alloc(
4787  const VmaAllocationRequest& request,
4788  VmaSuballocationType type,
4789  VkDeviceSize allocSize,
4790  VmaAllocation hAllocation)
4791 {
4792  VMA_ASSERT(request.item != m_Suballocations.end());
4793  VmaSuballocation& suballoc = *request.item;
4794  // Given suballocation is a free block.
4795  VMA_ASSERT(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
4796  // Given offset is inside this suballocation.
4797  VMA_ASSERT(request.offset >= suballoc.offset);
4798  const VkDeviceSize paddingBegin = request.offset - suballoc.offset;
4799  VMA_ASSERT(suballoc.size >= paddingBegin + allocSize);
4800  const VkDeviceSize paddingEnd = suballoc.size - paddingBegin - allocSize;
4801 
4802  // Unregister this free suballocation from m_FreeSuballocationsBySize and update
4803  // it to become used.
4804  UnregisterFreeSuballocation(request.item);
4805 
4806  suballoc.offset = request.offset;
4807  suballoc.size = allocSize;
4808  suballoc.type = type;
4809  suballoc.hAllocation = hAllocation;
4810 
4811  // If there are any free bytes remaining at the end, insert new free suballocation after current one.
4812  if(paddingEnd)
4813  {
4814  VmaSuballocation paddingSuballoc = {};
4815  paddingSuballoc.offset = request.offset + allocSize;
4816  paddingSuballoc.size = paddingEnd;
4817  paddingSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
4818  VmaSuballocationList::iterator next = request.item;
4819  ++next;
4820  const VmaSuballocationList::iterator paddingEndItem =
4821  m_Suballocations.insert(next, paddingSuballoc);
4822  RegisterFreeSuballocation(paddingEndItem);
4823  }
4824 
4825  // If there are any free bytes remaining at the beginning, insert new free suballocation before current one.
4826  if(paddingBegin)
4827  {
4828  VmaSuballocation paddingSuballoc = {};
4829  paddingSuballoc.offset = request.offset - paddingBegin;
4830  paddingSuballoc.size = paddingBegin;
4831  paddingSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
4832  const VmaSuballocationList::iterator paddingBeginItem =
4833  m_Suballocations.insert(request.item, paddingSuballoc);
4834  RegisterFreeSuballocation(paddingBeginItem);
4835  }
4836 
4837  // Update totals.
4838  m_FreeCount = m_FreeCount - 1;
4839  if(paddingBegin > 0)
4840  {
4841  ++m_FreeCount;
4842  }
4843  if(paddingEnd > 0)
4844  {
4845  ++m_FreeCount;
4846  }
4847  m_SumFreeSize -= allocSize;
4848 }
4849 
4850 VmaSuballocationList::iterator VmaDeviceMemoryBlock::FreeSuballocation(VmaSuballocationList::iterator suballocItem)
4851 {
4852  // Change this suballocation to be marked as free.
4853  VmaSuballocation& suballoc = *suballocItem;
4854  suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
4855  suballoc.hAllocation = VK_NULL_HANDLE;
4856 
4857  // Update totals.
4858  ++m_FreeCount;
4859  m_SumFreeSize += suballoc.size;
4860 
4861  // Merge with previous and/or next suballocation if it's also free.
4862  bool mergeWithNext = false;
4863  bool mergeWithPrev = false;
4864 
4865  VmaSuballocationList::iterator nextItem = suballocItem;
4866  ++nextItem;
4867  if((nextItem != m_Suballocations.end()) && (nextItem->type == VMA_SUBALLOCATION_TYPE_FREE))
4868  {
4869  mergeWithNext = true;
4870  }
4871 
4872  VmaSuballocationList::iterator prevItem = suballocItem;
4873  if(suballocItem != m_Suballocations.begin())
4874  {
4875  --prevItem;
4876  if(prevItem->type == VMA_SUBALLOCATION_TYPE_FREE)
4877  {
4878  mergeWithPrev = true;
4879  }
4880  }
4881 
4882  if(mergeWithNext)
4883  {
4884  UnregisterFreeSuballocation(nextItem);
4885  MergeFreeWithNext(suballocItem);
4886  }
4887 
4888  if(mergeWithPrev)
4889  {
4890  UnregisterFreeSuballocation(prevItem);
4891  MergeFreeWithNext(prevItem);
4892  RegisterFreeSuballocation(prevItem);
4893  return prevItem;
4894  }
4895  else
4896  {
4897  RegisterFreeSuballocation(suballocItem);
4898  return suballocItem;
4899  }
4900 }
4901 
4902 void VmaDeviceMemoryBlock::Free(const VmaAllocation allocation)
4903 {
4904  for(VmaSuballocationList::iterator suballocItem = m_Suballocations.begin();
4905  suballocItem != m_Suballocations.end();
4906  ++suballocItem)
4907  {
4908  VmaSuballocation& suballoc = *suballocItem;
4909  if(suballoc.hAllocation == allocation)
4910  {
4911  FreeSuballocation(suballocItem);
4912  VMA_HEAVY_ASSERT(Validate());
4913  return;
4914  }
4915  }
4916  VMA_ASSERT(0 && "Not found!");
4917 }
4918 
4919 #if VMA_STATS_STRING_ENABLED
4920 
4921 void VmaDeviceMemoryBlock::PrintDetailedMap(class VmaJsonWriter& json) const
4922 {
4923  json.BeginObject();
4924 
4925  json.WriteString("TotalBytes");
4926  json.WriteNumber(m_Size);
4927 
4928  json.WriteString("UnusedBytes");
4929  json.WriteNumber(m_SumFreeSize);
4930 
4931  json.WriteString("Allocations");
4932  json.WriteNumber(m_Suballocations.size() - m_FreeCount);
4933 
4934  json.WriteString("UnusedRanges");
4935  json.WriteNumber(m_FreeCount);
4936 
4937  json.WriteString("Suballocations");
4938  json.BeginArray();
4939  size_t i = 0;
4940  for(VmaSuballocationList::const_iterator suballocItem = m_Suballocations.cbegin();
4941  suballocItem != m_Suballocations.cend();
4942  ++suballocItem, ++i)
4943  {
4944  json.BeginObject(true);
4945 
4946  json.WriteString("Type");
4947  json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[suballocItem->type]);
4948 
4949  json.WriteString("Size");
4950  json.WriteNumber(suballocItem->size);
4951 
4952  json.WriteString("Offset");
4953  json.WriteNumber(suballocItem->offset);
4954 
4955  json.EndObject();
4956  }
4957  json.EndArray();
4958 
4959  json.EndObject();
4960 }
4961 
4962 #endif // #if VMA_STATS_STRING_ENABLED
4963 
4964 void VmaDeviceMemoryBlock::MergeFreeWithNext(VmaSuballocationList::iterator item)
4965 {
4966  VMA_ASSERT(item != m_Suballocations.end());
4967  VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE);
4968 
4969  VmaSuballocationList::iterator nextItem = item;
4970  ++nextItem;
4971  VMA_ASSERT(nextItem != m_Suballocations.end());
4972  VMA_ASSERT(nextItem->type == VMA_SUBALLOCATION_TYPE_FREE);
4973 
4974  item->size += nextItem->size;
4975  --m_FreeCount;
4976  m_Suballocations.erase(nextItem);
4977 }
4978 
4979 void VmaDeviceMemoryBlock::RegisterFreeSuballocation(VmaSuballocationList::iterator item)
4980 {
4981  VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE);
4982  VMA_ASSERT(item->size > 0);
4983 
4984  // You may want to enable this validation at the beginning or at the end of
4985  // this function, depending on what do you want to check.
4986  VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());
4987 
4988  if(item->size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)
4989  {
4990  if(m_FreeSuballocationsBySize.empty())
4991  {
4992  m_FreeSuballocationsBySize.push_back(item);
4993  }
4994  else
4995  {
4996  VmaVectorInsertSorted<VmaSuballocationItemSizeLess>(m_FreeSuballocationsBySize, item);
4997  }
4998  }
4999 
5000  //VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());
5001 }
5002 
5003 
5004 void VmaDeviceMemoryBlock::UnregisterFreeSuballocation(VmaSuballocationList::iterator item)
5005 {
5006  VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE);
5007  VMA_ASSERT(item->size > 0);
5008 
5009  // You may want to enable this validation at the beginning or at the end of
5010  // this function, depending on what do you want to check.
5011  VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());
5012 
5013  if(item->size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)
5014  {
5015  VmaSuballocationList::iterator* const it = VmaBinaryFindFirstNotLess(
5016  m_FreeSuballocationsBySize.data(),
5017  m_FreeSuballocationsBySize.data() + m_FreeSuballocationsBySize.size(),
5018  item,
5019  VmaSuballocationItemSizeLess());
5020  for(size_t index = it - m_FreeSuballocationsBySize.data();
5021  index < m_FreeSuballocationsBySize.size();
5022  ++index)
5023  {
5024  if(m_FreeSuballocationsBySize[index] == item)
5025  {
5026  VmaVectorRemove(m_FreeSuballocationsBySize, index);
5027  return;
5028  }
5029  VMA_ASSERT((m_FreeSuballocationsBySize[index]->size == item->size) && "Not found.");
5030  }
5031  VMA_ASSERT(0 && "Not found.");
5032  }
5033 
5034  //VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());
5035 }
5036 
5037 bool VmaDeviceMemoryBlock::ValidateFreeSuballocationList() const
5038 {
5039  VkDeviceSize lastSize = 0;
5040  for(size_t i = 0, count = m_FreeSuballocationsBySize.size(); i < count; ++i)
5041  {
5042  const VmaSuballocationList::iterator it = m_FreeSuballocationsBySize[i];
5043 
5044  if(it->type != VMA_SUBALLOCATION_TYPE_FREE)
5045  {
5046  VMA_ASSERT(0);
5047  return false;
5048  }
5049  if(it->size < VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)
5050  {
5051  VMA_ASSERT(0);
5052  return false;
5053  }
5054  if(it->size < lastSize)
5055  {
5056  VMA_ASSERT(0);
5057  return false;
5058  }
5059 
5060  lastSize = it->size;
5061  }
5062  return true;
5063 }
5064 
5065 static void InitStatInfo(VmaStatInfo& outInfo)
5066 {
5067  memset(&outInfo, 0, sizeof(outInfo));
5068  outInfo.allocationSizeMin = UINT64_MAX;
5069  outInfo.unusedRangeSizeMin = UINT64_MAX;
5070 }
5071 
5072 static void CalcAllocationStatInfo(VmaStatInfo& outInfo, const VmaDeviceMemoryBlock& block)
5073 {
5074  outInfo.blockCount = 1;
5075 
5076  const uint32_t rangeCount = (uint32_t)block.m_Suballocations.size();
5077  outInfo.allocationCount = rangeCount - block.m_FreeCount;
5078  outInfo.unusedRangeCount = block.m_FreeCount;
5079 
5080  outInfo.unusedBytes = block.m_SumFreeSize;
5081  outInfo.usedBytes = block.m_Size - outInfo.unusedBytes;
5082 
5083  outInfo.allocationSizeMin = UINT64_MAX;
5084  outInfo.allocationSizeMax = 0;
5085  outInfo.unusedRangeSizeMin = UINT64_MAX;
5086  outInfo.unusedRangeSizeMax = 0;
5087 
5088  for(VmaSuballocationList::const_iterator suballocItem = block.m_Suballocations.cbegin();
5089  suballocItem != block.m_Suballocations.cend();
5090  ++suballocItem)
5091  {
5092  const VmaSuballocation& suballoc = *suballocItem;
5093  if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE)
5094  {
5095  outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size);
5096  outInfo.allocationSizeMax = VMA_MAX(outInfo.allocationSizeMax, suballoc.size);
5097  }
5098  else
5099  {
5100  outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, suballoc.size);
5101  outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, suballoc.size);
5102  }
5103  }
5104 }
5105 
5106 // Adds statistics srcInfo into inoutInfo, like: inoutInfo += srcInfo.
5107 static void VmaAddStatInfo(VmaStatInfo& inoutInfo, const VmaStatInfo& srcInfo)
5108 {
5109  inoutInfo.blockCount += srcInfo.blockCount;
5110  inoutInfo.allocationCount += srcInfo.allocationCount;
5111  inoutInfo.unusedRangeCount += srcInfo.unusedRangeCount;
5112  inoutInfo.usedBytes += srcInfo.usedBytes;
5113  inoutInfo.unusedBytes += srcInfo.unusedBytes;
5114  inoutInfo.allocationSizeMin = VMA_MIN(inoutInfo.allocationSizeMin, srcInfo.allocationSizeMin);
5115  inoutInfo.allocationSizeMax = VMA_MAX(inoutInfo.allocationSizeMax, srcInfo.allocationSizeMax);
5116  inoutInfo.unusedRangeSizeMin = VMA_MIN(inoutInfo.unusedRangeSizeMin, srcInfo.unusedRangeSizeMin);
5117  inoutInfo.unusedRangeSizeMax = VMA_MAX(inoutInfo.unusedRangeSizeMax, srcInfo.unusedRangeSizeMax);
5118 }
5119 
5120 static void VmaPostprocessCalcStatInfo(VmaStatInfo& inoutInfo)
5121 {
5122  inoutInfo.allocationSizeAvg = (inoutInfo.allocationCount > 0) ?
5123  VmaRoundDiv<VkDeviceSize>(inoutInfo.usedBytes, inoutInfo.allocationCount) : 0;
5124  inoutInfo.unusedRangeSizeAvg = (inoutInfo.unusedRangeCount > 0) ?
5125  VmaRoundDiv<VkDeviceSize>(inoutInfo.unusedBytes, inoutInfo.unusedRangeCount) : 0;
5126 }
5127 
5128 VmaPool_T::VmaPool_T(
5129  VmaAllocator hAllocator,
5130  const VmaPoolCreateInfo& createInfo) :
5131  m_BlockVector(
5132  hAllocator,
5133  createInfo.memoryTypeIndex,
5134  (createInfo.flags & VMA_POOL_CREATE_PERSISTENT_MAP_BIT) != 0 ?
5135  VMA_BLOCK_VECTOR_TYPE_MAPPED : VMA_BLOCK_VECTOR_TYPE_UNMAPPED,
5136  createInfo.blockSize,
5137  createInfo.minBlockCount,
5138  createInfo.maxBlockCount,
5139  (createInfo.flags & VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT) != 0 ? 1 : hAllocator->GetBufferImageGranularity(),
5140  createInfo.frameInUseCount,
5141  true) // isCustomPool
5142 {
5143 }
5144 
5145 VmaPool_T::~VmaPool_T()
5146 {
5147 }
5148 
5149 #if VMA_STATS_STRING_ENABLED
5150 
5151 #endif // #if VMA_STATS_STRING_ENABLED
5152 
5153 VmaBlockVector::VmaBlockVector(
5154  VmaAllocator hAllocator,
5155  uint32_t memoryTypeIndex,
5156  VMA_BLOCK_VECTOR_TYPE blockVectorType,
5157  VkDeviceSize preferredBlockSize,
5158  size_t minBlockCount,
5159  size_t maxBlockCount,
5160  VkDeviceSize bufferImageGranularity,
5161  uint32_t frameInUseCount,
5162  bool isCustomPool) :
5163  m_hAllocator(hAllocator),
5164  m_MemoryTypeIndex(memoryTypeIndex),
5165  m_BlockVectorType(blockVectorType),
5166  m_PreferredBlockSize(preferredBlockSize),
5167  m_MinBlockCount(minBlockCount),
5168  m_MaxBlockCount(maxBlockCount),
5169  m_BufferImageGranularity(bufferImageGranularity),
5170  m_FrameInUseCount(frameInUseCount),
5171  m_IsCustomPool(isCustomPool),
5172  m_Blocks(VmaStlAllocator<VmaDeviceMemoryBlock*>(hAllocator->GetAllocationCallbacks())),
5173  m_HasEmptyBlock(false),
5174  m_pDefragmentator(VMA_NULL)
5175 {
5176 }
5177 
5178 VmaBlockVector::~VmaBlockVector()
5179 {
5180  VMA_ASSERT(m_pDefragmentator == VMA_NULL);
5181 
5182  for(size_t i = m_Blocks.size(); i--; )
5183  {
5184  m_Blocks[i]->Destroy(m_hAllocator);
5185  vma_delete(m_hAllocator, m_Blocks[i]);
5186  }
5187 }
5188 
5189 VkResult VmaBlockVector::CreateMinBlocks()
5190 {
5191  for(size_t i = 0; i < m_MinBlockCount; ++i)
5192  {
5193  VkResult res = CreateBlock(m_PreferredBlockSize, VMA_NULL);
5194  if(res != VK_SUCCESS)
5195  {
5196  return res;
5197  }
5198  }
5199  return VK_SUCCESS;
5200 }
5201 
5202 void VmaBlockVector::GetPoolStats(VmaPoolStats* pStats)
5203 {
5204  pStats->size = 0;
5205  pStats->unusedSize = 0;
5206  pStats->allocationCount = 0;
5207  pStats->unusedRangeCount = 0;
5208  pStats->unusedRangeSizeMax = 0;
5209 
5210  VmaMutexLock lock(m_Mutex, m_hAllocator->m_UseMutex);
5211 
5212  for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
5213  {
5214  const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];
5215  VMA_ASSERT(pBlock);
5216  VMA_HEAVY_ASSERT(pBlock->Validate());
5217 
5218  const uint32_t rangeCount = (uint32_t)pBlock->m_Suballocations.size();
5219 
5220  pStats->size += pBlock->m_Size;
5221  pStats->unusedSize += pBlock->m_SumFreeSize;
5222  pStats->allocationCount += rangeCount - pBlock->m_FreeCount;
5223  pStats->unusedRangeCount += pBlock->m_FreeCount;
5224  pStats->unusedRangeSizeMax = VMA_MAX(pStats->unusedRangeSizeMax, pBlock->GetUnusedRangeSizeMax());
5225  }
5226 }
5227 
5228 static const uint32_t VMA_ALLOCATION_TRY_COUNT = 32;
5229 
5230 VkResult VmaBlockVector::Allocate(
5231  VmaPool hCurrentPool,
5232  uint32_t currentFrameIndex,
5233  const VkMemoryRequirements& vkMemReq,
5234  const VmaAllocationCreateInfo& createInfo,
5235  VmaSuballocationType suballocType,
5236  VmaAllocation* pAllocation)
5237 {
5238  // Validate flags.
5239  if(((createInfo.flags & VMA_ALLOCATION_CREATE_PERSISTENT_MAP_BIT) != 0) !=
5240  (m_BlockVectorType == VMA_BLOCK_VECTOR_TYPE_MAPPED))
5241  {
5242  VMA_ASSERT(0 && "Usage of VMA_ALLOCATION_CREATE_PERSISTENT_MAP_BIT must match VMA_POOL_CREATE_PERSISTENT_MAP_BIT.");
5243  return VK_ERROR_OUT_OF_DEVICE_MEMORY;
5244  }
5245 
5246  VmaMutexLock lock(m_Mutex, m_hAllocator->m_UseMutex);
5247 
5248  // 1. Search existing allocations. Try to allocate without making other allocations lost.
5249  // Forward order in m_Blocks - prefer blocks with smallest amount of free space.
5250  for(size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex )
5251  {
5252  VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];
5253  VMA_ASSERT(pCurrBlock);
5254  VmaAllocationRequest currRequest = {};
5255  if(pCurrBlock->CreateAllocationRequest(
5256  currentFrameIndex,
5257  m_FrameInUseCount,
5258  m_BufferImageGranularity,
5259  vkMemReq.size,
5260  vkMemReq.alignment,
5261  suballocType,
5262  false, // canMakeOtherLost
5263  &currRequest))
5264  {
5265  // Allocate from pCurrBlock.
5266  VMA_ASSERT(currRequest.itemsToMakeLostCount == 0);
5267 
5268  // We no longer have an empty Allocation.
5269  if(pCurrBlock->IsEmpty())
5270  {
5271  m_HasEmptyBlock = false;
5272  }
5273 
5274  *pAllocation = vma_new(m_hAllocator, VmaAllocation_T)(currentFrameIndex);
5275  pCurrBlock->Alloc(currRequest, suballocType, vkMemReq.size, *pAllocation);
5276  (*pAllocation)->InitBlockAllocation(
5277  hCurrentPool,
5278  pCurrBlock,
5279  currRequest.offset,
5280  vkMemReq.alignment,
5281  vkMemReq.size,
5282  suballocType,
5283  createInfo.pUserData,
5284  (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0);
5285  VMA_HEAVY_ASSERT(pCurrBlock->Validate());
5286  VMA_DEBUG_LOG(" Returned from existing allocation #%u", (uint32_t)blockIndex);
5287  return VK_SUCCESS;
5288  }
5289  }
5290 
5291  const bool canCreateNewBlock =
5292  ((createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0) &&
5293  (m_Blocks.size() < m_MaxBlockCount);
5294 
5295  // 2. Try to create new block.
5296  if(canCreateNewBlock)
5297  {
5298  // 2.1. Start with full preferredBlockSize.
5299  VkDeviceSize blockSize = m_PreferredBlockSize;
5300  size_t newBlockIndex = 0;
5301  VkResult res = CreateBlock(blockSize, &newBlockIndex);
5302  // Allocating blocks of other sizes is allowed only in default pools.
5303  // In custom pools block size is fixed.
5304  if(res < 0 && m_IsCustomPool == false)
5305  {
5306  // 2.2. Try half the size.
5307  blockSize /= 2;
5308  if(blockSize >= vkMemReq.size)
5309  {
5310  res = CreateBlock(blockSize, &newBlockIndex);
5311  if(res < 0)
5312  {
5313  // 2.3. Try quarter the size.
5314  blockSize /= 2;
5315  if(blockSize >= vkMemReq.size)
5316  {
5317  res = CreateBlock(blockSize, &newBlockIndex);
5318  }
5319  }
5320  }
5321  }
5322  if(res == VK_SUCCESS)
5323  {
5324  VmaDeviceMemoryBlock* const pBlock = m_Blocks[newBlockIndex];
5325  VMA_ASSERT(pBlock->m_Size >= vkMemReq.size);
5326 
5327  // Allocate from pBlock. Because it is empty, dstAllocRequest can be trivially filled.
5328  VmaAllocationRequest allocRequest = {};
5329  allocRequest.item = pBlock->m_Suballocations.begin();
5330  allocRequest.offset = 0;
5331  *pAllocation = vma_new(m_hAllocator, VmaAllocation_T)(currentFrameIndex);
5332  pBlock->Alloc(allocRequest, suballocType, vkMemReq.size, *pAllocation);
5333  (*pAllocation)->InitBlockAllocation(
5334  hCurrentPool,
5335  pBlock,
5336  allocRequest.offset,
5337  vkMemReq.alignment,
5338  vkMemReq.size,
5339  suballocType,
5340  createInfo.pUserData,
5341  (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0);
5342  VMA_HEAVY_ASSERT(pBlock->Validate());
5343  VMA_DEBUG_LOG(" Created new allocation Size=%llu", allocInfo.allocationSize);
5344 
5345  return VK_SUCCESS;
5346  }
5347  }
5348 
5349  const bool canMakeOtherLost = (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT) != 0;
5350 
5351  // 3. Try to allocate from existing blocks with making other allocations lost.
5352  if(canMakeOtherLost)
5353  {
5354  uint32_t tryIndex = 0;
5355  for(; tryIndex < VMA_ALLOCATION_TRY_COUNT; ++tryIndex)
5356  {
5357  VmaDeviceMemoryBlock* pBestRequestBlock = VMA_NULL;
5358  VmaAllocationRequest bestRequest = {};
5359  VkDeviceSize bestRequestCost = VK_WHOLE_SIZE;
5360 
5361  // 1. Search existing allocations.
5362  // Forward order in m_Blocks - prefer blocks with smallest amount of free space.
5363  for(size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex )
5364  {
5365  VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];
5366  VMA_ASSERT(pCurrBlock);
5367  VmaAllocationRequest currRequest = {};
5368  if(pCurrBlock->CreateAllocationRequest(
5369  currentFrameIndex,
5370  m_FrameInUseCount,
5371  m_BufferImageGranularity,
5372  vkMemReq.size,
5373  vkMemReq.alignment,
5374  suballocType,
5375  canMakeOtherLost,
5376  &currRequest))
5377  {
5378  const VkDeviceSize currRequestCost = currRequest.CalcCost();
5379  if(pBestRequestBlock == VMA_NULL ||
5380  currRequestCost < bestRequestCost)
5381  {
5382  pBestRequestBlock = pCurrBlock;
5383  bestRequest = currRequest;
5384  bestRequestCost = currRequestCost;
5385 
5386  if(bestRequestCost == 0)
5387  {
5388  break;
5389  }
5390  }
5391  }
5392  }
5393 
5394  if(pBestRequestBlock != VMA_NULL)
5395  {
5396  if(pBestRequestBlock->MakeRequestedAllocationsLost(
5397  currentFrameIndex,
5398  m_FrameInUseCount,
5399  &bestRequest))
5400  {
5401  // We no longer have an empty Allocation.
5402  if(pBestRequestBlock->IsEmpty())
5403  {
5404  m_HasEmptyBlock = false;
5405  }
5406  // Allocate from this pBlock.
5407  *pAllocation = vma_new(m_hAllocator, VmaAllocation_T)(currentFrameIndex);
5408  pBestRequestBlock->Alloc(bestRequest, suballocType, vkMemReq.size, *pAllocation);
5409  (*pAllocation)->InitBlockAllocation(
5410  hCurrentPool,
5411  pBestRequestBlock,
5412  bestRequest.offset,
5413  vkMemReq.alignment,
5414  vkMemReq.size,
5415  suballocType,
5416  createInfo.pUserData,
5417  (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0);
5418  VMA_HEAVY_ASSERT(pBlock->Validate());
5419  VMA_DEBUG_LOG(" Returned from existing allocation #%u", (uint32_t)blockIndex);
5420  return VK_SUCCESS;
5421  }
5422  // else: Some allocations must have been touched while we are here. Next try.
5423  }
5424  else
5425  {
5426  // Could not find place in any of the blocks - break outer loop.
5427  break;
5428  }
5429  }
5430  /* Maximum number of tries exceeded - a very unlike event when many other
5431  threads are simultaneously touching allocations making it impossible to make
5432  lost at the same time as we try to allocate. */
5433  if(tryIndex == VMA_ALLOCATION_TRY_COUNT)
5434  {
5435  return VK_ERROR_TOO_MANY_OBJECTS;
5436  }
5437  }
5438 
5439  return VK_ERROR_OUT_OF_DEVICE_MEMORY;
5440 }
5441 
5442 void VmaBlockVector::Free(
5443  VmaAllocation hAllocation)
5444 {
5445  VmaDeviceMemoryBlock* pBlockToDelete = VMA_NULL;
5446 
5447  // Scope for lock.
5448  {
5449  VmaMutexLock lock(m_Mutex, m_hAllocator->m_UseMutex);
5450 
5451  VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock();
5452 
5453  pBlock->Free(hAllocation);
5454  VMA_HEAVY_ASSERT(pBlock->Validate());
5455 
5456  VMA_DEBUG_LOG(" Freed from MemoryTypeIndex=%u", memTypeIndex);
5457 
5458  // pBlock became empty after this deallocation.
5459  if(pBlock->IsEmpty())
5460  {
5461  // Already has empty Allocation. We don't want to have two, so delete this one.
5462  if(m_HasEmptyBlock && m_Blocks.size() > m_MinBlockCount)
5463  {
5464  pBlockToDelete = pBlock;
5465  Remove(pBlock);
5466  }
5467  // We now have first empty Allocation.
5468  else
5469  {
5470  m_HasEmptyBlock = true;
5471  }
5472  }
5473  // Must be called after srcBlockIndex is used, because later it may become invalid!
5474  IncrementallySortBlocks();
5475  }
5476 
5477  // Destruction of a free Allocation. Deferred until this point, outside of mutex
5478  // lock, for performance reason.
5479  if(pBlockToDelete != VMA_NULL)
5480  {
5481  VMA_DEBUG_LOG(" Deleted empty allocation");
5482  pBlockToDelete->Destroy(m_hAllocator);
5483  vma_delete(m_hAllocator, pBlockToDelete);
5484  }
5485 }
5486 
5487 void VmaBlockVector::Remove(VmaDeviceMemoryBlock* pBlock)
5488 {
5489  for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
5490  {
5491  if(m_Blocks[blockIndex] == pBlock)
5492  {
5493  VmaVectorRemove(m_Blocks, blockIndex);
5494  return;
5495  }
5496  }
5497  VMA_ASSERT(0);
5498 }
5499 
5500 void VmaBlockVector::IncrementallySortBlocks()
5501 {
5502  // Bubble sort only until first swap.
5503  for(size_t i = 1; i < m_Blocks.size(); ++i)
5504  {
5505  if(m_Blocks[i - 1]->m_SumFreeSize > m_Blocks[i]->m_SumFreeSize)
5506  {
5507  VMA_SWAP(m_Blocks[i - 1], m_Blocks[i]);
5508  return;
5509  }
5510  }
5511 }
5512 
5513 VkResult VmaBlockVector::CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex)
5514 {
5515  VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };
5516  allocInfo.memoryTypeIndex = m_MemoryTypeIndex;
5517  allocInfo.allocationSize = blockSize;
5518  VkDeviceMemory mem = VK_NULL_HANDLE;
5519  VkResult res = m_hAllocator->AllocateVulkanMemory(&allocInfo, &mem);
5520  if(res < 0)
5521  {
5522  return res;
5523  }
5524 
5525  // New VkDeviceMemory successfully created.
5526 
5527  // Map memory if needed.
5528  void* pMappedData = VMA_NULL;
5529  const bool persistentMap = (m_BlockVectorType == VMA_BLOCK_VECTOR_TYPE_MAPPED);
5530  if(persistentMap && m_hAllocator->m_UnmapPersistentlyMappedMemoryCounter == 0)
5531  {
5532  res = (*m_hAllocator->GetVulkanFunctions().vkMapMemory)(
5533  m_hAllocator->m_hDevice,
5534  mem,
5535  0,
5536  VK_WHOLE_SIZE,
5537  0,
5538  &pMappedData);
5539  if(res < 0)
5540  {
5541  VMA_DEBUG_LOG(" vkMapMemory FAILED");
5542  m_hAllocator->FreeVulkanMemory(m_MemoryTypeIndex, blockSize, mem);
5543  return res;
5544  }
5545  }
5546 
5547  // Create new Allocation for it.
5548  VmaDeviceMemoryBlock* const pBlock = vma_new(m_hAllocator, VmaDeviceMemoryBlock)(m_hAllocator);
5549  pBlock->Init(
5550  m_MemoryTypeIndex,
5551  (VMA_BLOCK_VECTOR_TYPE)m_BlockVectorType,
5552  mem,
5553  allocInfo.allocationSize,
5554  persistentMap,
5555  pMappedData);
5556 
5557  m_Blocks.push_back(pBlock);
5558  if(pNewBlockIndex != VMA_NULL)
5559  {
5560  *pNewBlockIndex = m_Blocks.size() - 1;
5561  }
5562 
5563  return VK_SUCCESS;
5564 }
5565 
5566 #if VMA_STATS_STRING_ENABLED
5567 
5568 void VmaBlockVector::PrintDetailedMap(class VmaJsonWriter& json)
5569 {
5570  VmaMutexLock lock(m_Mutex, m_hAllocator->m_UseMutex);
5571 
5572  json.BeginObject();
5573 
5574  if(m_IsCustomPool)
5575  {
5576  json.WriteString("MemoryTypeIndex");
5577  json.WriteNumber(m_MemoryTypeIndex);
5578 
5579  if(m_BlockVectorType == VMA_BLOCK_VECTOR_TYPE_MAPPED)
5580  {
5581  json.WriteString("Mapped");
5582  json.WriteBool(true);
5583  }
5584 
5585  json.WriteString("BlockSize");
5586  json.WriteNumber(m_PreferredBlockSize);
5587 
5588  json.WriteString("BlockCount");
5589  json.BeginObject(true);
5590  if(m_MinBlockCount > 0)
5591  {
5592  json.WriteString("Min");
5593  json.WriteNumber(m_MinBlockCount);
5594  }
5595  if(m_MaxBlockCount < SIZE_MAX)
5596  {
5597  json.WriteString("Max");
5598  json.WriteNumber(m_MaxBlockCount);
5599  }
5600  json.WriteString("Cur");
5601  json.WriteNumber(m_Blocks.size());
5602  json.EndObject();
5603 
5604  if(m_FrameInUseCount > 0)
5605  {
5606  json.WriteString("FrameInUseCount");
5607  json.WriteNumber(m_FrameInUseCount);
5608  }
5609  }
5610  else
5611  {
5612  json.WriteString("PreferredBlockSize");
5613  json.WriteNumber(m_PreferredBlockSize);
5614  }
5615 
5616  json.WriteString("Blocks");
5617  json.BeginArray();
5618  for(size_t i = 0; i < m_Blocks.size(); ++i)
5619  {
5620  m_Blocks[i]->PrintDetailedMap(json);
5621  }
5622  json.EndArray();
5623 
5624  json.EndObject();
5625 }
5626 
5627 #endif // #if VMA_STATS_STRING_ENABLED
5628 
5629 void VmaBlockVector::UnmapPersistentlyMappedMemory()
5630 {
5631  VmaMutexLock lock(m_Mutex, m_hAllocator->m_UseMutex);
5632 
5633  for(size_t i = m_Blocks.size(); i--; )
5634  {
5635  VmaDeviceMemoryBlock* pBlock = m_Blocks[i];
5636  if(pBlock->m_pMappedData != VMA_NULL)
5637  {
5638  VMA_ASSERT(pBlock->m_PersistentMap != false);
5639  (m_hAllocator->GetVulkanFunctions().vkUnmapMemory)(m_hAllocator->m_hDevice, pBlock->m_hMemory);
5640  pBlock->m_pMappedData = VMA_NULL;
5641  }
5642  }
5643 }
5644 
5645 VkResult VmaBlockVector::MapPersistentlyMappedMemory()
5646 {
5647  VmaMutexLock lock(m_Mutex, m_hAllocator->m_UseMutex);
5648 
5649  VkResult finalResult = VK_SUCCESS;
5650  for(size_t i = 0, count = m_Blocks.size(); i < count; ++i)
5651  {
5652  VmaDeviceMemoryBlock* pBlock = m_Blocks[i];
5653  if(pBlock->m_PersistentMap)
5654  {
5655  VMA_ASSERT(pBlock->m_pMappedData == nullptr);
5656  VkResult localResult = (*m_hAllocator->GetVulkanFunctions().vkMapMemory)(
5657  m_hAllocator->m_hDevice,
5658  pBlock->m_hMemory,
5659  0,
5660  VK_WHOLE_SIZE,
5661  0,
5662  &pBlock->m_pMappedData);
5663  if(localResult != VK_SUCCESS)
5664  {
5665  finalResult = localResult;
5666  }
5667  }
5668  }
5669  return finalResult;
5670 }
5671 
5672 VmaDefragmentator* VmaBlockVector::EnsureDefragmentator(
5673  VmaAllocator hAllocator,
5674  uint32_t currentFrameIndex)
5675 {
5676  if(m_pDefragmentator == VMA_NULL)
5677  {
5678  m_pDefragmentator = vma_new(m_hAllocator, VmaDefragmentator)(
5679  hAllocator,
5680  this,
5681  currentFrameIndex);
5682  }
5683 
5684  return m_pDefragmentator;
5685 }
5686 
5687 VkResult VmaBlockVector::Defragment(
5688  VmaDefragmentationStats* pDefragmentationStats,
5689  VkDeviceSize& maxBytesToMove,
5690  uint32_t& maxAllocationsToMove)
5691 {
5692  if(m_pDefragmentator == VMA_NULL)
5693  {
5694  return VK_SUCCESS;
5695  }
5696 
5697  VmaMutexLock lock(m_Mutex, m_hAllocator->m_UseMutex);
5698 
5699  // Defragment.
5700  VkResult result = m_pDefragmentator->Defragment(maxBytesToMove, maxAllocationsToMove);
5701 
5702  // Accumulate statistics.
5703  if(pDefragmentationStats != VMA_NULL)
5704  {
5705  const VkDeviceSize bytesMoved = m_pDefragmentator->GetBytesMoved();
5706  const uint32_t allocationsMoved = m_pDefragmentator->GetAllocationsMoved();
5707  pDefragmentationStats->bytesMoved += bytesMoved;
5708  pDefragmentationStats->allocationsMoved += allocationsMoved;
5709  VMA_ASSERT(bytesMoved <= maxBytesToMove);
5710  VMA_ASSERT(allocationsMoved <= maxAllocationsToMove);
5711  maxBytesToMove -= bytesMoved;
5712  maxAllocationsToMove -= allocationsMoved;
5713  }
5714 
5715  // Free empty blocks.
5716  m_HasEmptyBlock = false;
5717  for(size_t blockIndex = m_Blocks.size(); blockIndex--; )
5718  {
5719  VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex];
5720  if(pBlock->IsEmpty())
5721  {
5722  if(m_Blocks.size() > m_MinBlockCount)
5723  {
5724  if(pDefragmentationStats != VMA_NULL)
5725  {
5726  ++pDefragmentationStats->deviceMemoryBlocksFreed;
5727  pDefragmentationStats->bytesFreed += pBlock->m_Size;
5728  }
5729 
5730  VmaVectorRemove(m_Blocks, blockIndex);
5731  pBlock->Destroy(m_hAllocator);
5732  vma_delete(m_hAllocator, pBlock);
5733  }
5734  else
5735  {
5736  m_HasEmptyBlock = true;
5737  }
5738  }
5739  }
5740 
5741  return result;
5742 }
5743 
5744 void VmaBlockVector::DestroyDefragmentator()
5745 {
5746  if(m_pDefragmentator != VMA_NULL)
5747  {
5748  vma_delete(m_hAllocator, m_pDefragmentator);
5749  m_pDefragmentator = VMA_NULL;
5750  }
5751 }
5752 
5753 void VmaBlockVector::MakePoolAllocationsLost(
5754  uint32_t currentFrameIndex,
5755  size_t* pLostAllocationCount)
5756 {
5757  VmaMutexLock lock(m_Mutex, m_hAllocator->m_UseMutex);
5758 
5759  for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
5760  {
5761  VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];
5762  VMA_ASSERT(pBlock);
5763  pBlock->MakeAllocationsLost(currentFrameIndex, m_FrameInUseCount);
5764  }
5765 }
5766 
5767 void VmaBlockVector::AddStats(VmaStats* pStats)
5768 {
5769  const uint32_t memTypeIndex = m_MemoryTypeIndex;
5770  const uint32_t memHeapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(memTypeIndex);
5771 
5772  VmaMutexLock lock(m_Mutex, m_hAllocator->m_UseMutex);
5773 
5774  for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
5775  {
5776  const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];
5777  VMA_ASSERT(pBlock);
5778  VMA_HEAVY_ASSERT(pBlock->Validate());
5779  VmaStatInfo allocationStatInfo;
5780  CalcAllocationStatInfo(allocationStatInfo, *pBlock);
5781  VmaAddStatInfo(pStats->total, allocationStatInfo);
5782  VmaAddStatInfo(pStats->memoryType[memTypeIndex], allocationStatInfo);
5783  VmaAddStatInfo(pStats->memoryHeap[memHeapIndex], allocationStatInfo);
5784  }
5785 }
5786 
5788 // VmaDefragmentator members definition
5789 
5790 VmaDefragmentator::VmaDefragmentator(
5791  VmaAllocator hAllocator,
5792  VmaBlockVector* pBlockVector,
5793  uint32_t currentFrameIndex) :
5794  m_hAllocator(hAllocator),
5795  m_pBlockVector(pBlockVector),
5796  m_CurrentFrameIndex(currentFrameIndex),
5797  m_BytesMoved(0),
5798  m_AllocationsMoved(0),
5799  m_Allocations(VmaStlAllocator<AllocationInfo>(hAllocator->GetAllocationCallbacks())),
5800  m_Blocks(VmaStlAllocator<BlockInfo*>(hAllocator->GetAllocationCallbacks()))
5801 {
5802 }
5803 
5804 VmaDefragmentator::~VmaDefragmentator()
5805 {
5806  for(size_t i = m_Blocks.size(); i--; )
5807  {
5808  vma_delete(m_hAllocator, m_Blocks[i]);
5809  }
5810 }
5811 
5812 void VmaDefragmentator::AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged)
5813 {
5814  AllocationInfo allocInfo;
5815  allocInfo.m_hAllocation = hAlloc;
5816  allocInfo.m_pChanged = pChanged;
5817  m_Allocations.push_back(allocInfo);
5818 }
5819 
5820 VkResult VmaDefragmentator::BlockInfo::EnsureMapping(VmaAllocator hAllocator, void** ppMappedData)
5821 {
5822  // It has already been mapped for defragmentation.
5823  if(m_pMappedDataForDefragmentation)
5824  {
5825  *ppMappedData = m_pMappedDataForDefragmentation;
5826  return VK_SUCCESS;
5827  }
5828 
5829  // It is persistently mapped.
5830  if(m_pBlock->m_PersistentMap)
5831  {
5832  VMA_ASSERT(m_pBlock->m_pMappedData != VMA_NULL);
5833  *ppMappedData = m_pBlock->m_pMappedData;
5834  return VK_SUCCESS;
5835  }
5836 
5837  // Map on first usage.
5838  VkResult res = (*hAllocator->GetVulkanFunctions().vkMapMemory)(
5839  hAllocator->m_hDevice,
5840  m_pBlock->m_hMemory,
5841  0,
5842  VK_WHOLE_SIZE,
5843  0,
5844  &m_pMappedDataForDefragmentation);
5845  *ppMappedData = m_pMappedDataForDefragmentation;
5846  return res;
5847 }
5848 
5849 void VmaDefragmentator::BlockInfo::Unmap(VmaAllocator hAllocator)
5850 {
5851  if(m_pMappedDataForDefragmentation != VMA_NULL)
5852  {
5853  (hAllocator->GetVulkanFunctions().vkUnmapMemory)(hAllocator->m_hDevice, m_pBlock->m_hMemory);
5854  }
5855 }
5856 
5857 VkResult VmaDefragmentator::DefragmentRound(
5858  VkDeviceSize maxBytesToMove,
5859  uint32_t maxAllocationsToMove)
5860 {
5861  if(m_Blocks.empty())
5862  {
5863  return VK_SUCCESS;
5864  }
5865 
5866  size_t srcBlockIndex = m_Blocks.size() - 1;
5867  size_t srcAllocIndex = SIZE_MAX;
5868  for(;;)
5869  {
5870  // 1. Find next allocation to move.
5871  // 1.1. Start from last to first m_Blocks - they are sorted from most "destination" to most "source".
5872  // 1.2. Then start from last to first m_Allocations - they are sorted from largest to smallest.
5873  while(srcAllocIndex >= m_Blocks[srcBlockIndex]->m_Allocations.size())
5874  {
5875  if(m_Blocks[srcBlockIndex]->m_Allocations.empty())
5876  {
5877  // Finished: no more allocations to process.
5878  if(srcBlockIndex == 0)
5879  {
5880  return VK_SUCCESS;
5881  }
5882  else
5883  {
5884  --srcBlockIndex;
5885  srcAllocIndex = SIZE_MAX;
5886  }
5887  }
5888  else
5889  {
5890  srcAllocIndex = m_Blocks[srcBlockIndex]->m_Allocations.size() - 1;
5891  }
5892  }
5893 
5894  BlockInfo* pSrcBlockInfo = m_Blocks[srcBlockIndex];
5895  AllocationInfo& allocInfo = pSrcBlockInfo->m_Allocations[srcAllocIndex];
5896 
5897  const VkDeviceSize size = allocInfo.m_hAllocation->GetSize();
5898  const VkDeviceSize srcOffset = allocInfo.m_hAllocation->GetOffset();
5899  const VkDeviceSize alignment = allocInfo.m_hAllocation->GetAlignment();
5900  const VmaSuballocationType suballocType = allocInfo.m_hAllocation->GetSuballocationType();
5901 
5902  // 2. Try to find new place for this allocation in preceding or current block.
5903  for(size_t dstBlockIndex = 0; dstBlockIndex <= srcBlockIndex; ++dstBlockIndex)
5904  {
5905  BlockInfo* pDstBlockInfo = m_Blocks[dstBlockIndex];
5906  VmaAllocationRequest dstAllocRequest;
5907  if(pDstBlockInfo->m_pBlock->CreateAllocationRequest(
5908  m_CurrentFrameIndex,
5909  m_pBlockVector->GetFrameInUseCount(),
5910  m_pBlockVector->GetBufferImageGranularity(),
5911  size,
5912  alignment,
5913  suballocType,
5914  false, // canMakeOtherLost
5915  &dstAllocRequest) &&
5916  MoveMakesSense(
5917  dstBlockIndex, dstAllocRequest.offset, srcBlockIndex, srcOffset))
5918  {
5919  VMA_ASSERT(dstAllocRequest.itemsToMakeLostCount == 0);
5920 
5921  // Reached limit on number of allocations or bytes to move.
5922  if((m_AllocationsMoved + 1 > maxAllocationsToMove) ||
5923  (m_BytesMoved + size > maxBytesToMove))
5924  {
5925  return VK_INCOMPLETE;
5926  }
5927 
5928  void* pDstMappedData = VMA_NULL;
5929  VkResult res = pDstBlockInfo->EnsureMapping(m_hAllocator, &pDstMappedData);
5930  if(res != VK_SUCCESS)
5931  {
5932  return res;
5933  }
5934 
5935  void* pSrcMappedData = VMA_NULL;
5936  res = pSrcBlockInfo->EnsureMapping(m_hAllocator, &pSrcMappedData);
5937  if(res != VK_SUCCESS)
5938  {
5939  return res;
5940  }
5941 
5942  // THE PLACE WHERE ACTUAL DATA COPY HAPPENS.
5943  memcpy(
5944  reinterpret_cast<char*>(pDstMappedData) + dstAllocRequest.offset,
5945  reinterpret_cast<char*>(pSrcMappedData) + srcOffset,
5946  static_cast<size_t>(size));
5947 
5948  pDstBlockInfo->m_pBlock->Alloc(dstAllocRequest, suballocType, size, allocInfo.m_hAllocation);
5949  pSrcBlockInfo->m_pBlock->Free(allocInfo.m_hAllocation);
5950 
5951  allocInfo.m_hAllocation->ChangeBlockAllocation(pDstBlockInfo->m_pBlock, dstAllocRequest.offset);
5952 
5953  if(allocInfo.m_pChanged != VMA_NULL)
5954  {
5955  *allocInfo.m_pChanged = VK_TRUE;
5956  }
5957 
5958  ++m_AllocationsMoved;
5959  m_BytesMoved += size;
5960 
5961  VmaVectorRemove(pSrcBlockInfo->m_Allocations, srcAllocIndex);
5962 
5963  break;
5964  }
5965  }
5966 
5967  // If not processed, this allocInfo remains in pBlockInfo->m_Allocations for next round.
5968 
5969  if(srcAllocIndex > 0)
5970  {
5971  --srcAllocIndex;
5972  }
5973  else
5974  {
5975  if(srcBlockIndex > 0)
5976  {
5977  --srcBlockIndex;
5978  srcAllocIndex = SIZE_MAX;
5979  }
5980  else
5981  {
5982  return VK_SUCCESS;
5983  }
5984  }
5985  }
5986 }
5987 
5988 VkResult VmaDefragmentator::Defragment(
5989  VkDeviceSize maxBytesToMove,
5990  uint32_t maxAllocationsToMove)
5991 {
5992  if(m_Allocations.empty())
5993  {
5994  return VK_SUCCESS;
5995  }
5996 
5997  // Create block info for each block.
5998  const size_t blockCount = m_pBlockVector->m_Blocks.size();
5999  for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
6000  {
6001  BlockInfo* pBlockInfo = vma_new(m_hAllocator, BlockInfo)(m_hAllocator->GetAllocationCallbacks());
6002  pBlockInfo->m_pBlock = m_pBlockVector->m_Blocks[blockIndex];
6003  m_Blocks.push_back(pBlockInfo);
6004  }
6005 
6006  // Sort them by m_pBlock pointer value.
6007  VMA_SORT(m_Blocks.begin(), m_Blocks.end(), BlockPointerLess());
6008 
6009  // Move allocation infos from m_Allocations to appropriate m_Blocks[memTypeIndex].m_Allocations.
6010  for(size_t blockIndex = 0, allocCount = m_Allocations.size(); blockIndex < allocCount; ++blockIndex)
6011  {
6012  AllocationInfo& allocInfo = m_Allocations[blockIndex];
6013  // Now as we are inside VmaBlockVector::m_Mutex, we can make final check if this allocation was not lost.
6014  if(allocInfo.m_hAllocation->GetLastUseFrameIndex() != VMA_FRAME_INDEX_LOST)
6015  {
6016  VmaDeviceMemoryBlock* pBlock = allocInfo.m_hAllocation->GetBlock();
6017  BlockInfoVector::iterator it = VmaBinaryFindFirstNotLess(m_Blocks.begin(), m_Blocks.end(), pBlock, BlockPointerLess());
6018  if(it != m_Blocks.end() && (*it)->m_pBlock == pBlock)
6019  {
6020  (*it)->m_Allocations.push_back(allocInfo);
6021  }
6022  else
6023  {
6024  VMA_ASSERT(0);
6025  }
6026  }
6027  }
6028  m_Allocations.clear();
6029 
6030  for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
6031  {
6032  BlockInfo* pBlockInfo = m_Blocks[blockIndex];
6033  pBlockInfo->CalcHasNonMovableAllocations();
6034  pBlockInfo->SortAllocationsBySizeDescecnding();
6035  }
6036 
6037  // Sort m_Blocks this time by the main criterium, from most "destination" to most "source" blocks.
6038  VMA_SORT(m_Blocks.begin(), m_Blocks.end(), BlockInfoCompareMoveDestination());
6039 
6040  // Execute defragmentation rounds (the main part).
6041  VkResult result = VK_SUCCESS;
6042  for(size_t round = 0; (round < 2) && (result == VK_SUCCESS); ++round)
6043  {
6044  result = DefragmentRound(maxBytesToMove, maxAllocationsToMove);
6045  }
6046 
6047  // Unmap blocks that were mapped for defragmentation.
6048  for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
6049  {
6050  m_Blocks[blockIndex]->Unmap(m_hAllocator);
6051  }
6052 
6053  return result;
6054 }
6055 
6056 bool VmaDefragmentator::MoveMakesSense(
6057  size_t dstBlockIndex, VkDeviceSize dstOffset,
6058  size_t srcBlockIndex, VkDeviceSize srcOffset)
6059 {
6060  if(dstBlockIndex < srcBlockIndex)
6061  {
6062  return true;
6063  }
6064  if(dstBlockIndex > srcBlockIndex)
6065  {
6066  return false;
6067  }
6068  if(dstOffset < srcOffset)
6069  {
6070  return true;
6071  }
6072  return false;
6073 }
6074 
6076 // VmaAllocator_T
6077 
6078 VmaAllocator_T::VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo) :
6079  m_UseMutex((pCreateInfo->flags & VMA_ALLOCATOR_EXTERNALLY_SYNCHRONIZED_BIT) == 0),
6080  m_PhysicalDevice(pCreateInfo->physicalDevice),
6081  m_hDevice(pCreateInfo->device),
6082  m_AllocationCallbacksSpecified(pCreateInfo->pAllocationCallbacks != VMA_NULL),
6083  m_AllocationCallbacks(pCreateInfo->pAllocationCallbacks ?
6084  *pCreateInfo->pAllocationCallbacks : VmaEmptyAllocationCallbacks),
6085  m_UnmapPersistentlyMappedMemoryCounter(0),
6086  m_PreferredLargeHeapBlockSize(0),
6087  m_PreferredSmallHeapBlockSize(0),
6088  m_CurrentFrameIndex(0),
6089  m_Pools(VmaStlAllocator<VmaPool>(GetAllocationCallbacks()))
6090 {
6091  VMA_ASSERT(pCreateInfo->physicalDevice && pCreateInfo->device);
6092 
6093  memset(&m_DeviceMemoryCallbacks, 0 ,sizeof(m_DeviceMemoryCallbacks));
6094  memset(&m_MemProps, 0, sizeof(m_MemProps));
6095  memset(&m_PhysicalDeviceProperties, 0, sizeof(m_PhysicalDeviceProperties));
6096 
6097  memset(&m_pBlockVectors, 0, sizeof(m_pBlockVectors));
6098  memset(&m_pOwnAllocations, 0, sizeof(m_pOwnAllocations));
6099 
6100  for(uint32_t i = 0; i < VK_MAX_MEMORY_HEAPS; ++i)
6101  {
6102  m_HeapSizeLimit[i] = VK_WHOLE_SIZE;
6103  }
6104 
6105  if(pCreateInfo->pDeviceMemoryCallbacks != VMA_NULL)
6106  {
6107  m_DeviceMemoryCallbacks.pfnAllocate = pCreateInfo->pDeviceMemoryCallbacks->pfnAllocate;
6108  m_DeviceMemoryCallbacks.pfnFree = pCreateInfo->pDeviceMemoryCallbacks->pfnFree;
6109  }
6110 
6111  ImportVulkanFunctions(pCreateInfo->pVulkanFunctions);
6112 
6113  (*m_VulkanFunctions.vkGetPhysicalDeviceProperties)(m_PhysicalDevice, &m_PhysicalDeviceProperties);
6114  (*m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties)(m_PhysicalDevice, &m_MemProps);
6115 
6116  m_PreferredLargeHeapBlockSize = (pCreateInfo->preferredLargeHeapBlockSize != 0) ?
6117  pCreateInfo->preferredLargeHeapBlockSize : static_cast<VkDeviceSize>(VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE);
6118  m_PreferredSmallHeapBlockSize = (pCreateInfo->preferredSmallHeapBlockSize != 0) ?
6119  pCreateInfo->preferredSmallHeapBlockSize : static_cast<VkDeviceSize>(VMA_DEFAULT_SMALL_HEAP_BLOCK_SIZE);
6120 
6121  if(pCreateInfo->pHeapSizeLimit != VMA_NULL)
6122  {
6123  for(uint32_t heapIndex = 0; heapIndex < GetMemoryHeapCount(); ++heapIndex)
6124  {
6125  const VkDeviceSize limit = pCreateInfo->pHeapSizeLimit[heapIndex];
6126  if(limit != VK_WHOLE_SIZE)
6127  {
6128  m_HeapSizeLimit[heapIndex] = limit;
6129  if(limit < m_MemProps.memoryHeaps[heapIndex].size)
6130  {
6131  m_MemProps.memoryHeaps[heapIndex].size = limit;
6132  }
6133  }
6134  }
6135  }
6136 
6137  for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
6138  {
6139  const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(memTypeIndex);
6140 
6141  for(size_t blockVectorTypeIndex = 0; blockVectorTypeIndex < VMA_BLOCK_VECTOR_TYPE_COUNT; ++blockVectorTypeIndex)
6142  {
6143  m_pBlockVectors[memTypeIndex][blockVectorTypeIndex] = vma_new(this, VmaBlockVector)(
6144  this,
6145  memTypeIndex,
6146  static_cast<VMA_BLOCK_VECTOR_TYPE>(blockVectorTypeIndex),
6147  preferredBlockSize,
6148  0,
6149  SIZE_MAX,
6150  GetBufferImageGranularity(),
6151  pCreateInfo->frameInUseCount,
6152  false); // isCustomPool
6153  // No need to call m_pBlockVectors[memTypeIndex][blockVectorTypeIndex]->CreateMinBlocks here,
6154  // becase minBlockCount is 0.
6155  m_pOwnAllocations[memTypeIndex][blockVectorTypeIndex] = vma_new(this, AllocationVectorType)(VmaStlAllocator<VmaAllocation>(GetAllocationCallbacks()));
6156  }
6157  }
6158 }
6159 
6160 VmaAllocator_T::~VmaAllocator_T()
6161 {
6162  VMA_ASSERT(m_Pools.empty());
6163 
6164  for(size_t i = GetMemoryTypeCount(); i--; )
6165  {
6166  for(size_t j = VMA_BLOCK_VECTOR_TYPE_COUNT; j--; )
6167  {
6168  vma_delete(this, m_pOwnAllocations[i][j]);
6169  vma_delete(this, m_pBlockVectors[i][j]);
6170  }
6171  }
6172 }
6173 
6174 void VmaAllocator_T::ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions)
6175 {
6176 #if VMA_STATIC_VULKAN_FUNCTIONS == 1
6177  m_VulkanFunctions.vkGetPhysicalDeviceProperties = &vkGetPhysicalDeviceProperties;
6178  m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties = &vkGetPhysicalDeviceMemoryProperties;
6179  m_VulkanFunctions.vkAllocateMemory = &vkAllocateMemory;
6180  m_VulkanFunctions.vkFreeMemory = &vkFreeMemory;
6181  m_VulkanFunctions.vkMapMemory = &vkMapMemory;
6182  m_VulkanFunctions.vkUnmapMemory = &vkUnmapMemory;
6183  m_VulkanFunctions.vkBindBufferMemory = &vkBindBufferMemory;
6184  m_VulkanFunctions.vkBindImageMemory = &vkBindImageMemory;
6185  m_VulkanFunctions.vkGetBufferMemoryRequirements = &vkGetBufferMemoryRequirements;
6186  m_VulkanFunctions.vkGetImageMemoryRequirements = &vkGetImageMemoryRequirements;
6187  m_VulkanFunctions.vkCreateBuffer = &vkCreateBuffer;
6188  m_VulkanFunctions.vkDestroyBuffer = &vkDestroyBuffer;
6189  m_VulkanFunctions.vkCreateImage = &vkCreateImage;
6190  m_VulkanFunctions.vkDestroyImage = &vkDestroyImage;
6191 #endif // #if VMA_STATIC_VULKAN_FUNCTIONS == 1
6192 
6193  if(pVulkanFunctions != VMA_NULL)
6194  {
6195  m_VulkanFunctions = *pVulkanFunctions;
6196  }
6197 
6198  // If these asserts are hit, you must either #define VMA_STATIC_VULKAN_FUNCTIONS 1
6199  // or pass valid pointers as VmaAllocatorCreateInfo::pVulkanFunctions.
6200  VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceProperties != VMA_NULL);
6201  VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties != VMA_NULL);
6202  VMA_ASSERT(m_VulkanFunctions.vkAllocateMemory != VMA_NULL);
6203  VMA_ASSERT(m_VulkanFunctions.vkFreeMemory != VMA_NULL);
6204  VMA_ASSERT(m_VulkanFunctions.vkMapMemory != VMA_NULL);
6205  VMA_ASSERT(m_VulkanFunctions.vkUnmapMemory != VMA_NULL);
6206  VMA_ASSERT(m_VulkanFunctions.vkBindBufferMemory != VMA_NULL);
6207  VMA_ASSERT(m_VulkanFunctions.vkBindImageMemory != VMA_NULL);
6208  VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements != VMA_NULL);
6209  VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements != VMA_NULL);
6210  VMA_ASSERT(m_VulkanFunctions.vkCreateBuffer != VMA_NULL);
6211  VMA_ASSERT(m_VulkanFunctions.vkDestroyBuffer != VMA_NULL);
6212  VMA_ASSERT(m_VulkanFunctions.vkCreateImage != VMA_NULL);
6213  VMA_ASSERT(m_VulkanFunctions.vkDestroyImage != VMA_NULL);
6214 }
6215 
6216 VkDeviceSize VmaAllocator_T::CalcPreferredBlockSize(uint32_t memTypeIndex)
6217 {
6218  const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex);
6219  const VkDeviceSize heapSize = m_MemProps.memoryHeaps[heapIndex].size;
6220  return (heapSize <= VMA_SMALL_HEAP_MAX_SIZE) ?
6221  m_PreferredSmallHeapBlockSize : m_PreferredLargeHeapBlockSize;
6222 }
6223 
6224 VkResult VmaAllocator_T::AllocateMemoryOfType(
6225  const VkMemoryRequirements& vkMemReq,
6226  const VmaAllocationCreateInfo& createInfo,
6227  uint32_t memTypeIndex,
6228  VmaSuballocationType suballocType,
6229  VmaAllocation* pAllocation)
6230 {
6231  VMA_ASSERT(pAllocation != VMA_NULL);
6232  VMA_DEBUG_LOG(" AllocateMemory: MemoryTypeIndex=%u, Size=%llu", memTypeIndex, vkMemReq.size);
6233 
6234  uint32_t blockVectorType = VmaAllocationCreateFlagsToBlockVectorType(createInfo.flags);
6235  VmaBlockVector* const blockVector = m_pBlockVectors[memTypeIndex][blockVectorType];
6236  VMA_ASSERT(blockVector);
6237 
6238  const VkDeviceSize preferredBlockSize = blockVector->GetPreferredBlockSize();
6239  // Heuristics: Allocate own memory if requested size if greater than half of preferred block size.
6240  const bool ownMemory =
6241  (createInfo.flags & VMA_ALLOCATION_CREATE_OWN_MEMORY_BIT) != 0 ||
6242  VMA_DEBUG_ALWAYS_OWN_MEMORY ||
6243  ((createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0 &&
6244  vkMemReq.size > preferredBlockSize / 2);
6245 
6246  if(ownMemory)
6247  {
6248  if((createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)
6249  {
6250  return VK_ERROR_OUT_OF_DEVICE_MEMORY;
6251  }
6252  else
6253  {
6254  return AllocateOwnMemory(
6255  vkMemReq.size,
6256  suballocType,
6257  memTypeIndex,
6258  (createInfo.flags & VMA_ALLOCATION_CREATE_PERSISTENT_MAP_BIT) != 0,
6259  createInfo.pUserData,
6260  pAllocation);
6261  }
6262  }
6263  else
6264  {
6265  VkResult res = blockVector->Allocate(
6266  VK_NULL_HANDLE, // hCurrentPool
6267  m_CurrentFrameIndex.load(),
6268  vkMemReq,
6269  createInfo,
6270  suballocType,
6271  pAllocation);
6272  if(res == VK_SUCCESS)
6273  {
6274  return res;
6275  }
6276 
6277  // 5. Try own memory.
6278  res = AllocateOwnMemory(
6279  vkMemReq.size,
6280  suballocType,
6281  memTypeIndex,
6282  (createInfo.flags & VMA_ALLOCATION_CREATE_PERSISTENT_MAP_BIT) != 0,
6283  createInfo.pUserData,
6284  pAllocation);
6285  if(res == VK_SUCCESS)
6286  {
6287  // Succeeded: AllocateOwnMemory function already filld pMemory, nothing more to do here.
6288  VMA_DEBUG_LOG(" Allocated as OwnMemory");
6289  return VK_SUCCESS;
6290  }
6291  else
6292  {
6293  // Everything failed: Return error code.
6294  VMA_DEBUG_LOG(" vkAllocateMemory FAILED");
6295  return res;
6296  }
6297  }
6298 }
6299 
6300 VkResult VmaAllocator_T::AllocateOwnMemory(
6301  VkDeviceSize size,
6302  VmaSuballocationType suballocType,
6303  uint32_t memTypeIndex,
6304  bool map,
6305  void* pUserData,
6306  VmaAllocation* pAllocation)
6307 {
6308  VMA_ASSERT(pAllocation);
6309 
6310  VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };
6311  allocInfo.memoryTypeIndex = memTypeIndex;
6312  allocInfo.allocationSize = size;
6313 
6314  // Allocate VkDeviceMemory.
6315  VkDeviceMemory hMemory = VK_NULL_HANDLE;
6316  VkResult res = AllocateVulkanMemory(&allocInfo, &hMemory);
6317  if(res < 0)
6318  {
6319  VMA_DEBUG_LOG(" vkAllocateMemory FAILED");
6320  return res;
6321  }
6322 
6323  void* pMappedData = nullptr;
6324  if(map)
6325  {
6326  if(m_UnmapPersistentlyMappedMemoryCounter == 0)
6327  {
6328  res = vkMapMemory(m_hDevice, hMemory, 0, VK_WHOLE_SIZE, 0, &pMappedData);
6329  if(res < 0)
6330  {
6331  VMA_DEBUG_LOG(" vkMapMemory FAILED");
6332  FreeVulkanMemory(memTypeIndex, size, hMemory);
6333  return res;
6334  }
6335  }
6336  }
6337 
6338  *pAllocation = vma_new(this, VmaAllocation_T)(m_CurrentFrameIndex.load());
6339  (*pAllocation)->InitOwnAllocation(memTypeIndex, hMemory, suballocType, map, pMappedData, size, pUserData);
6340 
6341  // Register it in m_pOwnAllocations.
6342  {
6343  VmaMutexLock lock(m_OwnAllocationsMutex[memTypeIndex], m_UseMutex);
6344  AllocationVectorType* pOwnAllocations = m_pOwnAllocations[memTypeIndex][map ? VMA_BLOCK_VECTOR_TYPE_MAPPED : VMA_BLOCK_VECTOR_TYPE_UNMAPPED];
6345  VMA_ASSERT(pOwnAllocations);
6346  VmaVectorInsertSorted<VmaPointerLess>(*pOwnAllocations, *pAllocation);
6347  }
6348 
6349  VMA_DEBUG_LOG(" Allocated OwnMemory MemoryTypeIndex=#%u", memTypeIndex);
6350 
6351  return VK_SUCCESS;
6352 }
6353 
6354 VkResult VmaAllocator_T::AllocateMemory(
6355  const VkMemoryRequirements& vkMemReq,
6356  const VmaAllocationCreateInfo& createInfo,
6357  VmaSuballocationType suballocType,
6358  VmaAllocation* pAllocation)
6359 {
6360  if((createInfo.flags & VMA_ALLOCATION_CREATE_OWN_MEMORY_BIT) != 0 &&
6361  (createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)
6362  {
6363  VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_OWN_MEMORY_BIT together with VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT makes no sense.");
6364  return VK_ERROR_OUT_OF_DEVICE_MEMORY;
6365  }
6366  if((createInfo.pool != VK_NULL_HANDLE) &&
6367  ((createInfo.flags & (VMA_ALLOCATION_CREATE_OWN_MEMORY_BIT)) != 0))
6368  {
6369  VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_OWN_MEMORY_BIT when pool != null is invalid.");
6370  return VK_ERROR_OUT_OF_DEVICE_MEMORY;
6371  }
6372 
6373  if(createInfo.pool != VK_NULL_HANDLE)
6374  {
6375  return createInfo.pool->m_BlockVector.Allocate(
6376  createInfo.pool,
6377  m_CurrentFrameIndex.load(),
6378  vkMemReq,
6379  createInfo,
6380  suballocType,
6381  pAllocation);
6382  }
6383  else
6384  {
6385  // Bit mask of memory Vulkan types acceptable for this allocation.
6386  uint32_t memoryTypeBits = vkMemReq.memoryTypeBits;
6387  uint32_t memTypeIndex = UINT32_MAX;
6388  VkResult res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfo, &memTypeIndex);
6389  if(res == VK_SUCCESS)
6390  {
6391  res = AllocateMemoryOfType(vkMemReq, createInfo, memTypeIndex, suballocType, pAllocation);
6392  // Succeeded on first try.
6393  if(res == VK_SUCCESS)
6394  {
6395  return res;
6396  }
6397  // Allocation from this memory type failed. Try other compatible memory types.
6398  else
6399  {
6400  for(;;)
6401  {
6402  // Remove old memTypeIndex from list of possibilities.
6403  memoryTypeBits &= ~(1u << memTypeIndex);
6404  // Find alternative memTypeIndex.
6405  res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfo, &memTypeIndex);
6406  if(res == VK_SUCCESS)
6407  {
6408  res = AllocateMemoryOfType(vkMemReq, createInfo, memTypeIndex, suballocType, pAllocation);
6409  // Allocation from this alternative memory type succeeded.
6410  if(res == VK_SUCCESS)
6411  {
6412  return res;
6413  }
6414  // else: Allocation from this memory type failed. Try next one - next loop iteration.
6415  }
6416  // No other matching memory type index could be found.
6417  else
6418  {
6419  // Not returning res, which is VK_ERROR_FEATURE_NOT_PRESENT, because we already failed to allocate once.
6420  return VK_ERROR_OUT_OF_DEVICE_MEMORY;
6421  }
6422  }
6423  }
6424  }
6425  // Can't find any single memory type maching requirements. res is VK_ERROR_FEATURE_NOT_PRESENT.
6426  else
6427  return res;
6428  }
6429 }
6430 
6431 void VmaAllocator_T::FreeMemory(const VmaAllocation allocation)
6432 {
6433  VMA_ASSERT(allocation);
6434 
6435  if(allocation->CanBecomeLost() == false ||
6436  allocation->GetLastUseFrameIndex() != VMA_FRAME_INDEX_LOST)
6437  {
6438  switch(allocation->GetType())
6439  {
6440  case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
6441  {
6442  VmaBlockVector* pBlockVector = VMA_NULL;
6443  VmaPool hPool = allocation->GetPool();
6444  if(hPool != VK_NULL_HANDLE)
6445  {
6446  pBlockVector = &hPool->m_BlockVector;
6447  }
6448  else
6449  {
6450  const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();
6451  const VMA_BLOCK_VECTOR_TYPE blockVectorType = allocation->GetBlockVectorType();
6452  pBlockVector = m_pBlockVectors[memTypeIndex][blockVectorType];
6453  }
6454  pBlockVector->Free(allocation);
6455  }
6456  break;
6457  case VmaAllocation_T::ALLOCATION_TYPE_OWN:
6458  FreeOwnMemory(allocation);
6459  break;
6460  default:
6461  VMA_ASSERT(0);
6462  }
6463  }
6464 
6465  vma_delete(this, allocation);
6466 }
6467 
6468 void VmaAllocator_T::CalculateStats(VmaStats* pStats)
6469 {
6470  // Initialize.
6471  InitStatInfo(pStats->total);
6472  for(size_t i = 0; i < VK_MAX_MEMORY_TYPES; ++i)
6473  InitStatInfo(pStats->memoryType[i]);
6474  for(size_t i = 0; i < VK_MAX_MEMORY_HEAPS; ++i)
6475  InitStatInfo(pStats->memoryHeap[i]);
6476 
6477  // Process default pools.
6478  for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
6479  {
6480  const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex);
6481  for(uint32_t blockVectorType = 0; blockVectorType < VMA_BLOCK_VECTOR_TYPE_COUNT; ++blockVectorType)
6482  {
6483  VmaBlockVector* const pBlockVector = m_pBlockVectors[memTypeIndex][blockVectorType];
6484  VMA_ASSERT(pBlockVector);
6485  pBlockVector->AddStats(pStats);
6486  }
6487  }
6488 
6489  // Process custom pools.
6490  {
6491  VmaMutexLock lock(m_PoolsMutex, m_UseMutex);
6492  for(size_t poolIndex = 0, poolCount = m_Pools.size(); poolIndex < poolCount; ++poolIndex)
6493  {
6494  m_Pools[poolIndex]->GetBlockVector().AddStats(pStats);
6495  }
6496  }
6497 
6498  // Process own allocations.
6499  for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
6500  {
6501  const uint32_t memHeapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex);
6502  VmaMutexLock ownAllocationsLock(m_OwnAllocationsMutex[memTypeIndex], m_UseMutex);
6503  for(uint32_t blockVectorType = 0; blockVectorType < VMA_BLOCK_VECTOR_TYPE_COUNT; ++blockVectorType)
6504  {
6505  AllocationVectorType* const pOwnAllocVector = m_pOwnAllocations[memTypeIndex][blockVectorType];
6506  VMA_ASSERT(pOwnAllocVector);
6507  for(size_t allocIndex = 0, allocCount = pOwnAllocVector->size(); allocIndex < allocCount; ++allocIndex)
6508  {
6509  VmaStatInfo allocationStatInfo;
6510  (*pOwnAllocVector)[allocIndex]->OwnAllocCalcStatsInfo(allocationStatInfo);
6511  VmaAddStatInfo(pStats->total, allocationStatInfo);
6512  VmaAddStatInfo(pStats->memoryType[memTypeIndex], allocationStatInfo);
6513  VmaAddStatInfo(pStats->memoryHeap[memHeapIndex], allocationStatInfo);
6514  }
6515  }
6516  }
6517 
6518  // Postprocess.
6519  VmaPostprocessCalcStatInfo(pStats->total);
6520  for(size_t i = 0; i < GetMemoryTypeCount(); ++i)
6521  VmaPostprocessCalcStatInfo(pStats->memoryType[i]);
6522  for(size_t i = 0; i < GetMemoryHeapCount(); ++i)
6523  VmaPostprocessCalcStatInfo(pStats->memoryHeap[i]);
6524 }
6525 
6526 static const uint32_t VMA_VENDOR_ID_AMD = 4098;
6527 
6528 void VmaAllocator_T::UnmapPersistentlyMappedMemory()
6529 {
6530  if(m_UnmapPersistentlyMappedMemoryCounter++ == 0)
6531  {
6532  if(m_PhysicalDeviceProperties.vendorID == VMA_VENDOR_ID_AMD)
6533  {
6534  for(uint32_t memTypeIndex = m_MemProps.memoryTypeCount; memTypeIndex--; )
6535  {
6536  const VkMemoryPropertyFlags memFlags = m_MemProps.memoryTypes[memTypeIndex].propertyFlags;
6537  if((memFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0 &&
6538  (memFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) != 0)
6539  {
6540  // Process OwnAllocations.
6541  {
6542  VmaMutexLock lock(m_OwnAllocationsMutex[memTypeIndex], m_UseMutex);
6543  AllocationVectorType* pOwnAllocationsVector = m_pOwnAllocations[memTypeIndex][VMA_BLOCK_VECTOR_TYPE_MAPPED];
6544  for(size_t ownAllocIndex = pOwnAllocationsVector->size(); ownAllocIndex--; )
6545  {
6546  VmaAllocation hAlloc = (*pOwnAllocationsVector)[ownAllocIndex];
6547  hAlloc->OwnAllocUnmapPersistentlyMappedMemory(this);
6548  }
6549  }
6550 
6551  // Process normal Allocations.
6552  {
6553  VmaBlockVector* pBlockVector = m_pBlockVectors[memTypeIndex][VMA_BLOCK_VECTOR_TYPE_MAPPED];
6554  pBlockVector->UnmapPersistentlyMappedMemory();
6555  }
6556  }
6557  }
6558 
6559  // Process custom pools.
6560  {
6561  VmaMutexLock lock(m_PoolsMutex, m_UseMutex);
6562  for(size_t poolIndex = 0, poolCount = m_Pools.size(); poolIndex < poolCount; ++poolIndex)
6563  {
6564  m_Pools[poolIndex]->GetBlockVector().UnmapPersistentlyMappedMemory();
6565  }
6566  }
6567  }
6568  }
6569 }
6570 
6571 VkResult VmaAllocator_T::MapPersistentlyMappedMemory()
6572 {
6573  VMA_ASSERT(m_UnmapPersistentlyMappedMemoryCounter > 0);
6574  if(--m_UnmapPersistentlyMappedMemoryCounter == 0)
6575  {
6576  VkResult finalResult = VK_SUCCESS;
6577  if(m_PhysicalDeviceProperties.vendorID == VMA_VENDOR_ID_AMD)
6578  {
6579  // Process custom pools.
6580  {
6581  VmaMutexLock lock(m_PoolsMutex, m_UseMutex);
6582  for(size_t poolIndex = 0, poolCount = m_Pools.size(); poolIndex < poolCount; ++poolIndex)
6583  {
6584  m_Pools[poolIndex]->GetBlockVector().MapPersistentlyMappedMemory();
6585  }
6586  }
6587 
6588  for(uint32_t memTypeIndex = 0; memTypeIndex < m_MemProps.memoryTypeCount; ++memTypeIndex)
6589  {
6590  const VkMemoryPropertyFlags memFlags = m_MemProps.memoryTypes[memTypeIndex].propertyFlags;
6591  if((memFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0 &&
6592  (memFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) != 0)
6593  {
6594  // Process OwnAllocations.
6595  {
6596  VmaMutexLock lock(m_OwnAllocationsMutex[memTypeIndex], m_UseMutex);
6597  AllocationVectorType* pAllocationsVector = m_pOwnAllocations[memTypeIndex][VMA_BLOCK_VECTOR_TYPE_MAPPED];
6598  for(size_t ownAllocIndex = 0, ownAllocCount = pAllocationsVector->size(); ownAllocIndex < ownAllocCount; ++ownAllocIndex)
6599  {
6600  VmaAllocation hAlloc = (*pAllocationsVector)[ownAllocIndex];
6601  hAlloc->OwnAllocMapPersistentlyMappedMemory(this);
6602  }
6603  }
6604 
6605  // Process normal Allocations.
6606  {
6607  VmaBlockVector* pBlockVector = m_pBlockVectors[memTypeIndex][VMA_BLOCK_VECTOR_TYPE_MAPPED];
6608  VkResult localResult = pBlockVector->MapPersistentlyMappedMemory();
6609  if(localResult != VK_SUCCESS)
6610  {
6611  finalResult = localResult;
6612  }
6613  }
6614  }
6615  }
6616  }
6617  return finalResult;
6618  }
6619  else
6620  return VK_SUCCESS;
6621 }
6622 
6623 VkResult VmaAllocator_T::Defragment(
6624  VmaAllocation* pAllocations,
6625  size_t allocationCount,
6626  VkBool32* pAllocationsChanged,
6627  const VmaDefragmentationInfo* pDefragmentationInfo,
6628  VmaDefragmentationStats* pDefragmentationStats)
6629 {
6630  if(pAllocationsChanged != VMA_NULL)
6631  {
6632  memset(pAllocationsChanged, 0, sizeof(*pAllocationsChanged));
6633  }
6634  if(pDefragmentationStats != VMA_NULL)
6635  {
6636  memset(pDefragmentationStats, 0, sizeof(*pDefragmentationStats));
6637  }
6638 
6639  if(m_UnmapPersistentlyMappedMemoryCounter > 0)
6640  {
6641  VMA_DEBUG_LOG("ERROR: Cannot defragment when inside vmaUnmapPersistentlyMappedMemory.");
6642  return VK_ERROR_MEMORY_MAP_FAILED;
6643  }
6644 
6645  const uint32_t currentFrameIndex = m_CurrentFrameIndex.load();
6646 
6647  VmaMutexLock poolsLock(m_PoolsMutex, m_UseMutex);
6648 
6649  const size_t poolCount = m_Pools.size();
6650 
6651  // Dispatch pAllocations among defragmentators. Create them in BlockVectors when necessary.
6652  for(size_t allocIndex = 0; allocIndex < allocationCount; ++allocIndex)
6653  {
6654  VmaAllocation hAlloc = pAllocations[allocIndex];
6655  VMA_ASSERT(hAlloc);
6656  const uint32_t memTypeIndex = hAlloc->GetMemoryTypeIndex();
6657  // OwnAlloc cannot be defragmented.
6658  if((hAlloc->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK) &&
6659  // Only HOST_VISIBLE memory types can be defragmented.
6660  ((m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0) &&
6661  // Lost allocation cannot be defragmented.
6662  (hAlloc->GetLastUseFrameIndex() != VMA_FRAME_INDEX_LOST))
6663  {
6664  VmaBlockVector* pAllocBlockVector = nullptr;
6665 
6666  const VmaPool hAllocPool = hAlloc->GetPool();
6667  // This allocation belongs to custom pool.
6668  if(hAllocPool != VK_NULL_HANDLE)
6669  {
6670  pAllocBlockVector = &hAllocPool->GetBlockVector();
6671  }
6672  // This allocation belongs to general pool.
6673  else
6674  {
6675  pAllocBlockVector = m_pBlockVectors[memTypeIndex][hAlloc->GetBlockVectorType()];
6676  }
6677 
6678  VmaDefragmentator* const pDefragmentator = pAllocBlockVector->EnsureDefragmentator(this, currentFrameIndex);
6679 
6680  VkBool32* const pChanged = (pAllocationsChanged != VMA_NULL) ?
6681  &pAllocationsChanged[allocIndex] : VMA_NULL;
6682  pDefragmentator->AddAllocation(hAlloc, pChanged);
6683  }
6684  }
6685 
6686  VkResult result = VK_SUCCESS;
6687 
6688  // ======== Main processing.
6689 
6690  VkDeviceSize maxBytesToMove = SIZE_MAX;
6691  uint32_t maxAllocationsToMove = UINT32_MAX;
6692  if(pDefragmentationInfo != VMA_NULL)
6693  {
6694  maxBytesToMove = pDefragmentationInfo->maxBytesToMove;
6695  maxAllocationsToMove = pDefragmentationInfo->maxAllocationsToMove;
6696  }
6697 
6698  // Process standard memory.
6699  for(uint32_t memTypeIndex = 0;
6700  (memTypeIndex < GetMemoryTypeCount()) && (result == VK_SUCCESS);
6701  ++memTypeIndex)
6702  {
6703  // Only HOST_VISIBLE memory types can be defragmented.
6704  if((m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0)
6705  {
6706  for(uint32_t blockVectorType = 0;
6707  (blockVectorType < VMA_BLOCK_VECTOR_TYPE_COUNT) && (result == VK_SUCCESS);
6708  ++blockVectorType)
6709  {
6710  result = m_pBlockVectors[memTypeIndex][blockVectorType]->Defragment(
6711  pDefragmentationStats,
6712  maxBytesToMove,
6713  maxAllocationsToMove);
6714  }
6715  }
6716  }
6717 
6718  // Process custom pools.
6719  for(size_t poolIndex = 0; (poolIndex < poolCount) && (result == VK_SUCCESS); ++poolIndex)
6720  {
6721  result = m_Pools[poolIndex]->GetBlockVector().Defragment(
6722  pDefragmentationStats,
6723  maxBytesToMove,
6724  maxAllocationsToMove);
6725  }
6726 
6727  // ======== Destroy defragmentators.
6728 
6729  // Process custom pools.
6730  for(size_t poolIndex = poolCount; poolIndex--; )
6731  {
6732  m_Pools[poolIndex]->GetBlockVector().DestroyDefragmentator();
6733  }
6734 
6735  // Process standard memory.
6736  for(uint32_t memTypeIndex = GetMemoryTypeCount(); memTypeIndex--; )
6737  {
6738  if((m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0)
6739  {
6740  for(size_t blockVectorType = VMA_BLOCK_VECTOR_TYPE_COUNT; blockVectorType--; )
6741  {
6742  m_pBlockVectors[memTypeIndex][blockVectorType]->DestroyDefragmentator();
6743  }
6744  }
6745  }
6746 
6747  return result;
6748 }
6749 
6750 void VmaAllocator_T::GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo)
6751 {
6752  if(hAllocation->CanBecomeLost())
6753  {
6754  /*
6755  Warning: This is a carefully designed algorithm.
6756  Do not modify unless you really know what you're doing :)
6757  */
6758  uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load();
6759  uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex();
6760  for(;;)
6761  {
6762  if(localLastUseFrameIndex == VMA_FRAME_INDEX_LOST)
6763  {
6764  pAllocationInfo->memoryType = UINT32_MAX;
6765  pAllocationInfo->deviceMemory = VK_NULL_HANDLE;
6766  pAllocationInfo->offset = 0;
6767  pAllocationInfo->size = hAllocation->GetSize();
6768  pAllocationInfo->pMappedData = VMA_NULL;
6769  pAllocationInfo->pUserData = hAllocation->GetUserData();
6770  return;
6771  }
6772  else if(localLastUseFrameIndex == localCurrFrameIndex)
6773  {
6774  pAllocationInfo->memoryType = hAllocation->GetMemoryTypeIndex();
6775  pAllocationInfo->deviceMemory = hAllocation->GetMemory();
6776  pAllocationInfo->offset = hAllocation->GetOffset();
6777  pAllocationInfo->size = hAllocation->GetSize();
6778  pAllocationInfo->pMappedData = hAllocation->GetMappedData();
6779  pAllocationInfo->pUserData = hAllocation->GetUserData();
6780  return;
6781  }
6782  else // Last use time earlier than current time.
6783  {
6784  if(hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex))
6785  {
6786  localLastUseFrameIndex = localCurrFrameIndex;
6787  }
6788  }
6789  }
6790  }
6791  // We could use the same code here, but for performance reasons we don't need to use the hAllocation.LastUseFrameIndex atomic.
6792  else
6793  {
6794  pAllocationInfo->memoryType = hAllocation->GetMemoryTypeIndex();
6795  pAllocationInfo->deviceMemory = hAllocation->GetMemory();
6796  pAllocationInfo->offset = hAllocation->GetOffset();
6797  pAllocationInfo->size = hAllocation->GetSize();
6798  pAllocationInfo->pMappedData = hAllocation->GetMappedData();
6799  pAllocationInfo->pUserData = hAllocation->GetUserData();
6800  }
6801 }
6802 
6803 VkResult VmaAllocator_T::CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool)
6804 {
6805  VMA_DEBUG_LOG(" CreatePool: MemoryTypeIndex=%u", pCreateInfo->memoryTypeIndex);
6806 
6807  VmaPoolCreateInfo newCreateInfo = *pCreateInfo;
6808 
6809  if(newCreateInfo.maxBlockCount == 0)
6810  {
6811  newCreateInfo.maxBlockCount = SIZE_MAX;
6812  }
6813  if(newCreateInfo.blockSize == 0)
6814  {
6815  newCreateInfo.blockSize = CalcPreferredBlockSize(newCreateInfo.memoryTypeIndex);
6816  }
6817 
6818  *pPool = vma_new(this, VmaPool_T)(this, newCreateInfo);
6819 
6820  VkResult res = (*pPool)->m_BlockVector.CreateMinBlocks();
6821  if(res != VK_SUCCESS)
6822  {
6823  vma_delete(this, *pPool);
6824  *pPool = VMA_NULL;
6825  return res;
6826  }
6827 
6828  // Add to m_Pools.
6829  {
6830  VmaMutexLock lock(m_PoolsMutex, m_UseMutex);
6831  VmaVectorInsertSorted<VmaPointerLess>(m_Pools, *pPool);
6832  }
6833 
6834  return VK_SUCCESS;
6835 }
6836 
6837 void VmaAllocator_T::DestroyPool(VmaPool pool)
6838 {
6839  // Remove from m_Pools.
6840  {
6841  VmaMutexLock lock(m_PoolsMutex, m_UseMutex);
6842  bool success = VmaVectorRemoveSorted<VmaPointerLess>(m_Pools, pool);
6843  VMA_ASSERT(success && "Pool not found in Allocator.");
6844  }
6845 
6846  vma_delete(this, pool);
6847 }
6848 
6849 void VmaAllocator_T::GetPoolStats(VmaPool pool, VmaPoolStats* pPoolStats)
6850 {
6851  pool->m_BlockVector.GetPoolStats(pPoolStats);
6852 }
6853 
6854 void VmaAllocator_T::SetCurrentFrameIndex(uint32_t frameIndex)
6855 {
6856  m_CurrentFrameIndex.store(frameIndex);
6857 }
6858 
6859 void VmaAllocator_T::MakePoolAllocationsLost(
6860  VmaPool hPool,
6861  size_t* pLostAllocationCount)
6862 {
6863  hPool->m_BlockVector.MakePoolAllocationsLost(
6864  m_CurrentFrameIndex.load(),
6865  pLostAllocationCount);
6866 }
6867 
6868 void VmaAllocator_T::CreateLostAllocation(VmaAllocation* pAllocation)
6869 {
6870  *pAllocation = vma_new(this, VmaAllocation_T)(VMA_FRAME_INDEX_LOST);
6871  (*pAllocation)->InitLost();
6872 }
6873 
6874 VkResult VmaAllocator_T::AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory)
6875 {
6876  const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(pAllocateInfo->memoryTypeIndex);
6877 
6878  VkResult res;
6879  if(m_HeapSizeLimit[heapIndex] != VK_WHOLE_SIZE)
6880  {
6881  VmaMutexLock lock(m_HeapSizeLimitMutex, m_UseMutex);
6882  if(m_HeapSizeLimit[heapIndex] >= pAllocateInfo->allocationSize)
6883  {
6884  res = (*m_VulkanFunctions.vkAllocateMemory)(m_hDevice, pAllocateInfo, GetAllocationCallbacks(), pMemory);
6885  if(res == VK_SUCCESS)
6886  {
6887  m_HeapSizeLimit[heapIndex] -= pAllocateInfo->allocationSize;
6888  }
6889  }
6890  else
6891  {
6892  res = VK_ERROR_OUT_OF_DEVICE_MEMORY;
6893  }
6894  }
6895  else
6896  {
6897  res = (*m_VulkanFunctions.vkAllocateMemory)(m_hDevice, pAllocateInfo, GetAllocationCallbacks(), pMemory);
6898  }
6899 
6900  if(res == VK_SUCCESS && m_DeviceMemoryCallbacks.pfnAllocate != VMA_NULL)
6901  {
6902  (*m_DeviceMemoryCallbacks.pfnAllocate)(this, pAllocateInfo->memoryTypeIndex, *pMemory, pAllocateInfo->allocationSize);
6903  }
6904 
6905  return res;
6906 }
6907 
6908 void VmaAllocator_T::FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory)
6909 {
6910  if(m_DeviceMemoryCallbacks.pfnFree != VMA_NULL)
6911  {
6912  (*m_DeviceMemoryCallbacks.pfnFree)(this, memoryType, hMemory, size);
6913  }
6914 
6915  (*m_VulkanFunctions.vkFreeMemory)(m_hDevice, hMemory, GetAllocationCallbacks());
6916 
6917  const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memoryType);
6918  if(m_HeapSizeLimit[heapIndex] != VK_WHOLE_SIZE)
6919  {
6920  VmaMutexLock lock(m_HeapSizeLimitMutex, m_UseMutex);
6921  m_HeapSizeLimit[heapIndex] += size;
6922  }
6923 }
6924 
6925 void VmaAllocator_T::FreeOwnMemory(VmaAllocation allocation)
6926 {
6927  VMA_ASSERT(allocation && allocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_OWN);
6928 
6929  const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();
6930  {
6931  VmaMutexLock lock(m_OwnAllocationsMutex[memTypeIndex], m_UseMutex);
6932  AllocationVectorType* const pOwnAllocations = m_pOwnAllocations[memTypeIndex][allocation->GetBlockVectorType()];
6933  VMA_ASSERT(pOwnAllocations);
6934  bool success = VmaVectorRemoveSorted<VmaPointerLess>(*pOwnAllocations, allocation);
6935  VMA_ASSERT(success);
6936  }
6937 
6938  VkDeviceMemory hMemory = allocation->GetMemory();
6939 
6940  if(allocation->GetMappedData() != VMA_NULL)
6941  {
6942  vkUnmapMemory(m_hDevice, hMemory);
6943  }
6944 
6945  FreeVulkanMemory(memTypeIndex, allocation->GetSize(), hMemory);
6946 
6947  VMA_DEBUG_LOG(" Freed OwnMemory MemoryTypeIndex=%u", memTypeIndex);
6948 }
6949 
6950 #if VMA_STATS_STRING_ENABLED
6951 
6952 void VmaAllocator_T::PrintDetailedMap(VmaJsonWriter& json)
6953 {
6954  bool ownAllocationsStarted = false;
6955  for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
6956  {
6957  VmaMutexLock ownAllocationsLock(m_OwnAllocationsMutex[memTypeIndex], m_UseMutex);
6958  for(uint32_t blockVectorType = 0; blockVectorType < VMA_BLOCK_VECTOR_TYPE_COUNT; ++blockVectorType)
6959  {
6960  AllocationVectorType* const pOwnAllocVector = m_pOwnAllocations[memTypeIndex][blockVectorType];
6961  VMA_ASSERT(pOwnAllocVector);
6962  if(pOwnAllocVector->empty() == false)
6963  {
6964  if(ownAllocationsStarted == false)
6965  {
6966  ownAllocationsStarted = true;
6967  json.WriteString("OwnAllocations");
6968  json.BeginObject();
6969  }
6970 
6971  json.BeginString("Type ");
6972  json.ContinueString(memTypeIndex);
6973  if(blockVectorType == VMA_BLOCK_VECTOR_TYPE_MAPPED)
6974  {
6975  json.ContinueString(" Mapped");
6976  }
6977  json.EndString();
6978 
6979  json.BeginArray();
6980 
6981  for(size_t i = 0; i < pOwnAllocVector->size(); ++i)
6982  {
6983  const VmaAllocation hAlloc = (*pOwnAllocVector)[i];
6984  json.BeginObject(true);
6985 
6986  json.WriteString("Size");
6987  json.WriteNumber(hAlloc->GetSize());
6988 
6989  json.WriteString("Type");
6990  json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[hAlloc->GetSuballocationType()]);
6991 
6992  json.EndObject();
6993  }
6994 
6995  json.EndArray();
6996  }
6997  }
6998  }
6999  if(ownAllocationsStarted)
7000  {
7001  json.EndObject();
7002  }
7003 
7004  {
7005  bool allocationsStarted = false;
7006  for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
7007  {
7008  for(uint32_t blockVectorType = 0; blockVectorType < VMA_BLOCK_VECTOR_TYPE_COUNT; ++blockVectorType)
7009  {
7010  if(m_pBlockVectors[memTypeIndex][blockVectorType]->IsEmpty() == false)
7011  {
7012  if(allocationsStarted == false)
7013  {
7014  allocationsStarted = true;
7015  json.WriteString("DefaultPools");
7016  json.BeginObject();
7017  }
7018 
7019  json.BeginString("Type ");
7020  json.ContinueString(memTypeIndex);
7021  if(blockVectorType == VMA_BLOCK_VECTOR_TYPE_MAPPED)
7022  {
7023  json.ContinueString(" Mapped");
7024  }
7025  json.EndString();
7026 
7027  m_pBlockVectors[memTypeIndex][blockVectorType]->PrintDetailedMap(json);
7028  }
7029  }
7030  }
7031  if(allocationsStarted)
7032  {
7033  json.EndObject();
7034  }
7035  }
7036 
7037  {
7038  VmaMutexLock lock(m_PoolsMutex, m_UseMutex);
7039  const size_t poolCount = m_Pools.size();
7040  if(poolCount > 0)
7041  {
7042  json.WriteString("Pools");
7043  json.BeginArray();
7044  for(size_t poolIndex = 0; poolIndex < poolCount; ++poolIndex)
7045  {
7046  m_Pools[poolIndex]->m_BlockVector.PrintDetailedMap(json);
7047  }
7048  json.EndArray();
7049  }
7050  }
7051 }
7052 
7053 #endif // #if VMA_STATS_STRING_ENABLED
7054 
7055 static VkResult AllocateMemoryForImage(
7056  VmaAllocator allocator,
7057  VkImage image,
7058  const VmaAllocationCreateInfo* pAllocationCreateInfo,
7059  VmaSuballocationType suballocType,
7060  VmaAllocation* pAllocation)
7061 {
7062  VMA_ASSERT(allocator && (image != VK_NULL_HANDLE) && pAllocationCreateInfo && pAllocation);
7063 
7064  VkMemoryRequirements vkMemReq = {};
7065  (*allocator->GetVulkanFunctions().vkGetImageMemoryRequirements)(allocator->m_hDevice, image, &vkMemReq);
7066 
7067  return allocator->AllocateMemory(
7068  vkMemReq,
7069  *pAllocationCreateInfo,
7070  suballocType,
7071  pAllocation);
7072 }
7073 
7075 // Public interface
7076 
7077 VkResult vmaCreateAllocator(
7078  const VmaAllocatorCreateInfo* pCreateInfo,
7079  VmaAllocator* pAllocator)
7080 {
7081  VMA_ASSERT(pCreateInfo && pAllocator);
7082  VMA_DEBUG_LOG("vmaCreateAllocator");
7083  *pAllocator = vma_new(pCreateInfo->pAllocationCallbacks, VmaAllocator_T)(pCreateInfo);
7084  return VK_SUCCESS;
7085 }
7086 
7087 void vmaDestroyAllocator(
7088  VmaAllocator allocator)
7089 {
7090  if(allocator != VK_NULL_HANDLE)
7091  {
7092  VMA_DEBUG_LOG("vmaDestroyAllocator");
7093  VkAllocationCallbacks allocationCallbacks = allocator->m_AllocationCallbacks;
7094  vma_delete(&allocationCallbacks, allocator);
7095  }
7096 }
7097 
7099  VmaAllocator allocator,
7100  const VkPhysicalDeviceProperties **ppPhysicalDeviceProperties)
7101 {
7102  VMA_ASSERT(allocator && ppPhysicalDeviceProperties);
7103  *ppPhysicalDeviceProperties = &allocator->m_PhysicalDeviceProperties;
7104 }
7105 
7107  VmaAllocator allocator,
7108  const VkPhysicalDeviceMemoryProperties** ppPhysicalDeviceMemoryProperties)
7109 {
7110  VMA_ASSERT(allocator && ppPhysicalDeviceMemoryProperties);
7111  *ppPhysicalDeviceMemoryProperties = &allocator->m_MemProps;
7112 }
7113 
7115  VmaAllocator allocator,
7116  uint32_t memoryTypeIndex,
7117  VkMemoryPropertyFlags* pFlags)
7118 {
7119  VMA_ASSERT(allocator && pFlags);
7120  VMA_ASSERT(memoryTypeIndex < allocator->GetMemoryTypeCount());
7121  *pFlags = allocator->m_MemProps.memoryTypes[memoryTypeIndex].propertyFlags;
7122 }
7123 
7125  VmaAllocator allocator,
7126  uint32_t frameIndex)
7127 {
7128  VMA_ASSERT(allocator);
7129  VMA_ASSERT(frameIndex != VMA_FRAME_INDEX_LOST);
7130 
7131  VMA_DEBUG_GLOBAL_MUTEX_LOCK
7132 
7133  allocator->SetCurrentFrameIndex(frameIndex);
7134 }
7135 
7136 void vmaCalculateStats(
7137  VmaAllocator allocator,
7138  VmaStats* pStats)
7139 {
7140  VMA_ASSERT(allocator && pStats);
7141  VMA_DEBUG_GLOBAL_MUTEX_LOCK
7142  allocator->CalculateStats(pStats);
7143 }
7144 
7145 #if VMA_STATS_STRING_ENABLED
7146 
7147 void vmaBuildStatsString(
7148  VmaAllocator allocator,
7149  char** ppStatsString,
7150  VkBool32 detailedMap)
7151 {
7152  VMA_ASSERT(allocator && ppStatsString);
7153  VMA_DEBUG_GLOBAL_MUTEX_LOCK
7154 
7155  VmaStringBuilder sb(allocator);
7156  {
7157  VmaJsonWriter json(allocator->GetAllocationCallbacks(), sb);
7158  json.BeginObject();
7159 
7160  VmaStats stats;
7161  allocator->CalculateStats(&stats);
7162 
7163  json.WriteString("Total");
7164  VmaPrintStatInfo(json, stats.total);
7165 
7166  for(uint32_t heapIndex = 0; heapIndex < allocator->GetMemoryHeapCount(); ++heapIndex)
7167  {
7168  json.BeginString("Heap ");
7169  json.ContinueString(heapIndex);
7170  json.EndString();
7171  json.BeginObject();
7172 
7173  json.WriteString("Size");
7174  json.WriteNumber(allocator->m_MemProps.memoryHeaps[heapIndex].size);
7175 
7176  json.WriteString("Flags");
7177  json.BeginArray(true);
7178  if((allocator->m_MemProps.memoryHeaps[heapIndex].flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) != 0)
7179  {
7180  json.WriteString("DEVICE_LOCAL");
7181  }
7182  json.EndArray();
7183 
7184  if(stats.memoryHeap[heapIndex].blockCount > 0)
7185  {
7186  json.WriteString("Stats");
7187  VmaPrintStatInfo(json, stats.memoryHeap[heapIndex]);
7188  }
7189 
7190  for(uint32_t typeIndex = 0; typeIndex < allocator->GetMemoryTypeCount(); ++typeIndex)
7191  {
7192  if(allocator->MemoryTypeIndexToHeapIndex(typeIndex) == heapIndex)
7193  {
7194  json.BeginString("Type ");
7195  json.ContinueString(typeIndex);
7196  json.EndString();
7197 
7198  json.BeginObject();
7199 
7200  json.WriteString("Flags");
7201  json.BeginArray(true);
7202  VkMemoryPropertyFlags flags = allocator->m_MemProps.memoryTypes[typeIndex].propertyFlags;
7203  if((flags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) != 0)
7204  {
7205  json.WriteString("DEVICE_LOCAL");
7206  }
7207  if((flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0)
7208  {
7209  json.WriteString("HOST_VISIBLE");
7210  }
7211  if((flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) != 0)
7212  {
7213  json.WriteString("HOST_COHERENT");
7214  }
7215  if((flags & VK_MEMORY_PROPERTY_HOST_CACHED_BIT) != 0)
7216  {
7217  json.WriteString("HOST_CACHED");
7218  }
7219  if((flags & VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT) != 0)
7220  {
7221  json.WriteString("LAZILY_ALLOCATED");
7222  }
7223  json.EndArray();
7224 
7225  if(stats.memoryType[typeIndex].blockCount > 0)
7226  {
7227  json.WriteString("Stats");
7228  VmaPrintStatInfo(json, stats.memoryType[typeIndex]);
7229  }
7230 
7231  json.EndObject();
7232  }
7233  }
7234 
7235  json.EndObject();
7236  }
7237  if(detailedMap == VK_TRUE)
7238  {
7239  allocator->PrintDetailedMap(json);
7240  }
7241 
7242  json.EndObject();
7243  }
7244 
7245  const size_t len = sb.GetLength();
7246  char* const pChars = vma_new_array(allocator, char, len + 1);
7247  if(len > 0)
7248  {
7249  memcpy(pChars, sb.GetData(), len);
7250  }
7251  pChars[len] = '\0';
7252  *ppStatsString = pChars;
7253 }
7254 
7255 void vmaFreeStatsString(
7256  VmaAllocator allocator,
7257  char* pStatsString)
7258 {
7259  if(pStatsString != VMA_NULL)
7260  {
7261  VMA_ASSERT(allocator);
7262  size_t len = strlen(pStatsString);
7263  vma_delete_array(allocator, pStatsString, len + 1);
7264  }
7265 }
7266 
7267 #endif // #if VMA_STATS_STRING_ENABLED
7268 
7271 VkResult vmaFindMemoryTypeIndex(
7272  VmaAllocator allocator,
7273  uint32_t memoryTypeBits,
7274  const VmaAllocationCreateInfo* pAllocationCreateInfo,
7275  uint32_t* pMemoryTypeIndex)
7276 {
7277  VMA_ASSERT(allocator != VK_NULL_HANDLE);
7278  VMA_ASSERT(pAllocationCreateInfo != VMA_NULL);
7279  VMA_ASSERT(pMemoryTypeIndex != VMA_NULL);
7280 
7281  uint32_t requiredFlags = pAllocationCreateInfo->requiredFlags;
7282  uint32_t preferredFlags = pAllocationCreateInfo->preferredFlags;
7283  if(preferredFlags == 0)
7284  {
7285  preferredFlags = requiredFlags;
7286  }
7287  // preferredFlags, if not 0, must be a superset of requiredFlags.
7288  VMA_ASSERT((requiredFlags & ~preferredFlags) == 0);
7289 
7290  // Convert usage to requiredFlags and preferredFlags.
7291  switch(pAllocationCreateInfo->usage)
7292  {
7294  break;
7296  preferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
7297  break;
7299  requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
7300  break;
7302  requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
7303  preferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
7304  break;
7306  requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
7307  preferredFlags |= VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
7308  break;
7309  default:
7310  break;
7311  }
7312 
7313  if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_PERSISTENT_MAP_BIT) != 0)
7314  {
7315  requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
7316  }
7317 
7318  *pMemoryTypeIndex = UINT32_MAX;
7319  uint32_t minCost = UINT32_MAX;
7320  for(uint32_t memTypeIndex = 0, memTypeBit = 1;
7321  memTypeIndex < allocator->GetMemoryTypeCount();
7322  ++memTypeIndex, memTypeBit <<= 1)
7323  {
7324  // This memory type is acceptable according to memoryTypeBits bitmask.
7325  if((memTypeBit & memoryTypeBits) != 0)
7326  {
7327  const VkMemoryPropertyFlags currFlags =
7328  allocator->m_MemProps.memoryTypes[memTypeIndex].propertyFlags;
7329  // This memory type contains requiredFlags.
7330  if((requiredFlags & ~currFlags) == 0)
7331  {
7332  // Calculate cost as number of bits from preferredFlags not present in this memory type.
7333  uint32_t currCost = CountBitsSet(preferredFlags & ~currFlags);
7334  // Remember memory type with lowest cost.
7335  if(currCost < minCost)
7336  {
7337  *pMemoryTypeIndex = memTypeIndex;
7338  if(currCost == 0)
7339  {
7340  return VK_SUCCESS;
7341  }
7342  minCost = currCost;
7343  }
7344  }
7345  }
7346  }
7347  return (*pMemoryTypeIndex != UINT32_MAX) ? VK_SUCCESS : VK_ERROR_FEATURE_NOT_PRESENT;
7348 }
7349 
7350 VkResult vmaCreatePool(
7351  VmaAllocator allocator,
7352  const VmaPoolCreateInfo* pCreateInfo,
7353  VmaPool* pPool)
7354 {
7355  VMA_ASSERT(allocator && pCreateInfo && pPool);
7356 
7357  VMA_DEBUG_LOG("vmaCreatePool");
7358 
7359  VMA_DEBUG_GLOBAL_MUTEX_LOCK
7360 
7361  return allocator->CreatePool(pCreateInfo, pPool);
7362 }
7363 
7364 void vmaDestroyPool(
7365  VmaAllocator allocator,
7366  VmaPool pool)
7367 {
7368  VMA_ASSERT(allocator && pool);
7369 
7370  VMA_DEBUG_LOG("vmaDestroyPool");
7371 
7372  VMA_DEBUG_GLOBAL_MUTEX_LOCK
7373 
7374  allocator->DestroyPool(pool);
7375 }
7376 
7377 void vmaGetPoolStats(
7378  VmaAllocator allocator,
7379  VmaPool pool,
7380  VmaPoolStats* pPoolStats)
7381 {
7382  VMA_ASSERT(allocator && pool && pPoolStats);
7383 
7384  VMA_DEBUG_GLOBAL_MUTEX_LOCK
7385 
7386  allocator->GetPoolStats(pool, pPoolStats);
7387 }
7388 
7390  VmaAllocator allocator,
7391  VmaPool pool,
7392  size_t* pLostAllocationCount)
7393 {
7394  VMA_ASSERT(allocator && pool);
7395 
7396  VMA_DEBUG_GLOBAL_MUTEX_LOCK
7397 
7398  allocator->MakePoolAllocationsLost(pool, pLostAllocationCount);
7399 }
7400 
7401 VkResult vmaAllocateMemory(
7402  VmaAllocator allocator,
7403  const VkMemoryRequirements* pVkMemoryRequirements,
7404  const VmaAllocationCreateInfo* pCreateInfo,
7405  VmaAllocation* pAllocation,
7406  VmaAllocationInfo* pAllocationInfo)
7407 {
7408  VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocation);
7409 
7410  VMA_DEBUG_LOG("vmaAllocateMemory");
7411 
7412  VMA_DEBUG_GLOBAL_MUTEX_LOCK
7413 
7414  VkResult result = allocator->AllocateMemory(
7415  *pVkMemoryRequirements,
7416  *pCreateInfo,
7417  VMA_SUBALLOCATION_TYPE_UNKNOWN,
7418  pAllocation);
7419 
7420  if(pAllocationInfo && result == VK_SUCCESS)
7421  {
7422  allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
7423  }
7424 
7425  return result;
7426 }
7427 
7429  VmaAllocator allocator,
7430  VkBuffer buffer,
7431  const VmaAllocationCreateInfo* pCreateInfo,
7432  VmaAllocation* pAllocation,
7433  VmaAllocationInfo* pAllocationInfo)
7434 {
7435  VMA_ASSERT(allocator && buffer != VK_NULL_HANDLE && pCreateInfo && pAllocation);
7436 
7437  VMA_DEBUG_LOG("vmaAllocateMemoryForBuffer");
7438 
7439  VMA_DEBUG_GLOBAL_MUTEX_LOCK
7440 
7441  VkMemoryRequirements vkMemReq = {};
7442  (*allocator->GetVulkanFunctions().vkGetBufferMemoryRequirements)(allocator->m_hDevice, buffer, &vkMemReq);
7443 
7444  VkResult result = allocator->AllocateMemory(
7445  vkMemReq,
7446  *pCreateInfo,
7447  VMA_SUBALLOCATION_TYPE_BUFFER,
7448  pAllocation);
7449 
7450  if(pAllocationInfo && result == VK_SUCCESS)
7451  {
7452  allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
7453  }
7454 
7455  return result;
7456 }
7457 
7458 VkResult vmaAllocateMemoryForImage(
7459  VmaAllocator allocator,
7460  VkImage image,
7461  const VmaAllocationCreateInfo* pCreateInfo,
7462  VmaAllocation* pAllocation,
7463  VmaAllocationInfo* pAllocationInfo)
7464 {
7465  VMA_ASSERT(allocator && image != VK_NULL_HANDLE && pCreateInfo && pAllocation);
7466 
7467  VMA_DEBUG_LOG("vmaAllocateMemoryForImage");
7468 
7469  VMA_DEBUG_GLOBAL_MUTEX_LOCK
7470 
7471  VkResult result = AllocateMemoryForImage(
7472  allocator,
7473  image,
7474  pCreateInfo,
7475  VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN,
7476  pAllocation);
7477 
7478  if(pAllocationInfo && result == VK_SUCCESS)
7479  {
7480  allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
7481  }
7482 
7483  return result;
7484 }
7485 
7486 void vmaFreeMemory(
7487  VmaAllocator allocator,
7488  VmaAllocation allocation)
7489 {
7490  VMA_ASSERT(allocator && allocation);
7491 
7492  VMA_DEBUG_LOG("vmaFreeMemory");
7493 
7494  VMA_DEBUG_GLOBAL_MUTEX_LOCK
7495 
7496  allocator->FreeMemory(allocation);
7497 }
7498 
7500  VmaAllocator allocator,
7501  VmaAllocation allocation,
7502  VmaAllocationInfo* pAllocationInfo)
7503 {
7504  VMA_ASSERT(allocator && allocation && pAllocationInfo);
7505 
7506  VMA_DEBUG_GLOBAL_MUTEX_LOCK
7507 
7508  allocator->GetAllocationInfo(allocation, pAllocationInfo);
7509 }
7510 
7512  VmaAllocator allocator,
7513  VmaAllocation allocation,
7514  void* pUserData)
7515 {
7516  VMA_ASSERT(allocator && allocation);
7517 
7518  VMA_DEBUG_GLOBAL_MUTEX_LOCK
7519 
7520  allocation->SetUserData(pUserData);
7521 }
7522 
7524  VmaAllocator allocator,
7525  VmaAllocation* pAllocation)
7526 {
7527  VMA_ASSERT(allocator && pAllocation);
7528 
7529  VMA_DEBUG_GLOBAL_MUTEX_LOCK;
7530 
7531  allocator->CreateLostAllocation(pAllocation);
7532 }
7533 
7534 VkResult vmaMapMemory(
7535  VmaAllocator allocator,
7536  VmaAllocation allocation,
7537  void** ppData)
7538 {
7539  VMA_ASSERT(allocator && allocation && ppData);
7540 
7541  VMA_DEBUG_GLOBAL_MUTEX_LOCK
7542 
7543  return vkMapMemory(allocator->m_hDevice, allocation->GetMemory(),
7544  allocation->GetOffset(), allocation->GetSize(), 0, ppData);
7545 }
7546 
7547 void vmaUnmapMemory(
7548  VmaAllocator allocator,
7549  VmaAllocation allocation)
7550 {
7551  VMA_ASSERT(allocator && allocation);
7552 
7553  VMA_DEBUG_GLOBAL_MUTEX_LOCK
7554 
7555  vkUnmapMemory(allocator->m_hDevice, allocation->GetMemory());
7556 }
7557 
7558 void vmaUnmapPersistentlyMappedMemory(VmaAllocator allocator)
7559 {
7560  VMA_ASSERT(allocator);
7561 
7562  VMA_DEBUG_GLOBAL_MUTEX_LOCK
7563 
7564  allocator->UnmapPersistentlyMappedMemory();
7565 }
7566 
7567 VkResult vmaMapPersistentlyMappedMemory(VmaAllocator allocator)
7568 {
7569  VMA_ASSERT(allocator);
7570 
7571  VMA_DEBUG_GLOBAL_MUTEX_LOCK
7572 
7573  return allocator->MapPersistentlyMappedMemory();
7574 }
7575 
7576 VkResult vmaDefragment(
7577  VmaAllocator allocator,
7578  VmaAllocation* pAllocations,
7579  size_t allocationCount,
7580  VkBool32* pAllocationsChanged,
7581  const VmaDefragmentationInfo *pDefragmentationInfo,
7582  VmaDefragmentationStats* pDefragmentationStats)
7583 {
7584  VMA_ASSERT(allocator && pAllocations);
7585 
7586  VMA_DEBUG_LOG("vmaDefragment");
7587 
7588  VMA_DEBUG_GLOBAL_MUTEX_LOCK
7589 
7590  return allocator->Defragment(pAllocations, allocationCount, pAllocationsChanged, pDefragmentationInfo, pDefragmentationStats);
7591 }
7592 
7593 VkResult vmaCreateBuffer(
7594  VmaAllocator allocator,
7595  const VkBufferCreateInfo* pBufferCreateInfo,
7596  const VmaAllocationCreateInfo* pAllocationCreateInfo,
7597  VkBuffer* pBuffer,
7598  VmaAllocation* pAllocation,
7599  VmaAllocationInfo* pAllocationInfo)
7600 {
7601  VMA_ASSERT(allocator && pBufferCreateInfo && pAllocationCreateInfo && pBuffer && pAllocation);
7602 
7603  VMA_DEBUG_LOG("vmaCreateBuffer");
7604 
7605  VMA_DEBUG_GLOBAL_MUTEX_LOCK
7606 
7607  *pBuffer = VK_NULL_HANDLE;
7608  *pAllocation = VK_NULL_HANDLE;
7609 
7610  // 1. Create VkBuffer.
7611  VkResult res = (*allocator->GetVulkanFunctions().vkCreateBuffer)(
7612  allocator->m_hDevice,
7613  pBufferCreateInfo,
7614  allocator->GetAllocationCallbacks(),
7615  pBuffer);
7616  if(res >= 0)
7617  {
7618  // 2. vkGetBufferMemoryRequirements.
7619  VkMemoryRequirements vkMemReq = {};
7620  (*allocator->GetVulkanFunctions().vkGetBufferMemoryRequirements)(allocator->m_hDevice, *pBuffer, &vkMemReq);
7621 
7622  // 3. Allocate memory using allocator.
7623  res = allocator->AllocateMemory(
7624  vkMemReq,
7625  *pAllocationCreateInfo,
7626  VMA_SUBALLOCATION_TYPE_BUFFER,
7627  pAllocation);
7628  if(res >= 0)
7629  {
7630  // 3. Bind buffer with memory.
7631  res = (*allocator->GetVulkanFunctions().vkBindBufferMemory)(
7632  allocator->m_hDevice,
7633  *pBuffer,
7634  (*pAllocation)->GetMemory(),
7635  (*pAllocation)->GetOffset());
7636  if(res >= 0)
7637  {
7638  // All steps succeeded.
7639  if(pAllocationInfo != VMA_NULL)
7640  {
7641  allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
7642  }
7643  return VK_SUCCESS;
7644  }
7645  allocator->FreeMemory(*pAllocation);
7646  *pAllocation = VK_NULL_HANDLE;
7647  return res;
7648  }
7649  (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());
7650  *pBuffer = VK_NULL_HANDLE;
7651  return res;
7652  }
7653  return res;
7654 }
7655 
7656 void vmaDestroyBuffer(
7657  VmaAllocator allocator,
7658  VkBuffer buffer,
7659  VmaAllocation allocation)
7660 {
7661  if(buffer != VK_NULL_HANDLE)
7662  {
7663  VMA_ASSERT(allocator);
7664 
7665  VMA_DEBUG_LOG("vmaDestroyBuffer");
7666 
7667  VMA_DEBUG_GLOBAL_MUTEX_LOCK
7668 
7669  (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, buffer, allocator->GetAllocationCallbacks());
7670 
7671  allocator->FreeMemory(allocation);
7672  }
7673 }
7674 
7675 VkResult vmaCreateImage(
7676  VmaAllocator allocator,
7677  const VkImageCreateInfo* pImageCreateInfo,
7678  const VmaAllocationCreateInfo* pAllocationCreateInfo,
7679  VkImage* pImage,
7680  VmaAllocation* pAllocation,
7681  VmaAllocationInfo* pAllocationInfo)
7682 {
7683  VMA_ASSERT(allocator && pImageCreateInfo && pAllocationCreateInfo && pImage && pAllocation);
7684 
7685  VMA_DEBUG_LOG("vmaCreateImage");
7686 
7687  VMA_DEBUG_GLOBAL_MUTEX_LOCK
7688 
7689  *pImage = VK_NULL_HANDLE;
7690  *pAllocation = VK_NULL_HANDLE;
7691 
7692  // 1. Create VkImage.
7693  VkResult res = (*allocator->GetVulkanFunctions().vkCreateImage)(
7694  allocator->m_hDevice,
7695  pImageCreateInfo,
7696  allocator->GetAllocationCallbacks(),
7697  pImage);
7698  if(res >= 0)
7699  {
7700  VmaSuballocationType suballocType = pImageCreateInfo->tiling == VK_IMAGE_TILING_OPTIMAL ?
7701  VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL :
7702  VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR;
7703 
7704  // 2. Allocate memory using allocator.
7705  res = AllocateMemoryForImage(allocator, *pImage, pAllocationCreateInfo, suballocType, pAllocation);
7706  if(res >= 0)
7707  {
7708  // 3. Bind image with memory.
7709  res = (*allocator->GetVulkanFunctions().vkBindImageMemory)(
7710  allocator->m_hDevice,
7711  *pImage,
7712  (*pAllocation)->GetMemory(),
7713  (*pAllocation)->GetOffset());
7714  if(res >= 0)
7715  {
7716  // All steps succeeded.
7717  if(pAllocationInfo != VMA_NULL)
7718  {
7719  allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
7720  }
7721  return VK_SUCCESS;
7722  }
7723  allocator->FreeMemory(*pAllocation);
7724  *pAllocation = VK_NULL_HANDLE;
7725  return res;
7726  }
7727  (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks());
7728  *pImage = VK_NULL_HANDLE;
7729  return res;
7730  }
7731  return res;
7732 }
7733 
7734 void vmaDestroyImage(
7735  VmaAllocator allocator,
7736  VkImage image,
7737  VmaAllocation allocation)
7738 {
7739  if(image != VK_NULL_HANDLE)
7740  {
7741  VMA_ASSERT(allocator);
7742 
7743  VMA_DEBUG_LOG("vmaDestroyImage");
7744 
7745  VMA_DEBUG_GLOBAL_MUTEX_LOCK
7746 
7747  (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, image, allocator->GetAllocationCallbacks());
7748 
7749  allocator->FreeMemory(allocation);
7750  }
7751 }
7752 
7753 #endif // #ifdef VMA_IMPLEMENTATION
PFN_vkGetPhysicalDeviceProperties vkGetPhysicalDeviceProperties
Definition: vk_mem_alloc.h:440
VkPhysicalDevice physicalDevice
Vulkan physical device.
Definition: vk_mem_alloc.h:463
Definition: vk_mem_alloc.h:794
void vmaGetPoolStats(VmaAllocator allocator, VmaPool pool, VmaPoolStats *pPoolStats)
Retrieves statistics of existing VmaPool object.
PFN_vkCreateBuffer vkCreateBuffer
Definition: vk_mem_alloc.h:450
Memory will be used for frequent writing on device and readback on host (download).
Definition: vk_mem_alloc.h:645
VkResult vmaFindMemoryTypeIndex(VmaAllocator allocator, uint32_t memoryTypeBits, const VmaAllocationCreateInfo *pAllocationCreateInfo, uint32_t *pMemoryTypeIndex)
PFN_vkMapMemory vkMapMemory
Definition: vk_mem_alloc.h:444
VkDeviceMemory deviceMemory
Handle to Vulkan memory object.
Definition: vk_mem_alloc.h:922
uint32_t maxAllocationsToMove
Maximum number of allocations that can be moved to different place.
Definition: vk_mem_alloc.h:1075
VkResult vmaCreateImage(VmaAllocator allocator, const VkImageCreateInfo *pImageCreateInfo, const VmaAllocationCreateInfo *pAllocationCreateInfo, VkImage *pImage, VmaAllocation *pAllocation, VmaAllocationInfo *pAllocationInfo)
Function similar to vmaCreateBuffer().
void vmaGetAllocationInfo(VmaAllocator allocator, VmaAllocation allocation, VmaAllocationInfo *pAllocationInfo)
Returns current information about specified allocation.
void vmaUnmapPersistentlyMappedMemory(VmaAllocator allocator)
Unmaps persistently mapped memory of types that are HOST_COHERENT and DEVICE_LOCAL.
void vmaDestroyImage(VmaAllocator allocator, VkImage image, VmaAllocation allocation)
Destroys Vulkan image and frees allocated memory.
VkDeviceSize size
Total amount of VkDeviceMemory allocated from Vulkan for this pool, in bytes.
Definition: vk_mem_alloc.h:846
struct VmaDefragmentationInfo VmaDefragmentationInfo
Optional configuration parameters to be passed to function vmaDefragment().
Definition: vk_mem_alloc.h:694
VkMemoryPropertyFlags preferredFlags
Flags that preferably should be set in a Memory Type chosen for an allocation.
Definition: vk_mem_alloc.h:727
void(VKAPI_PTR * PFN_vmaFreeDeviceMemoryFunction)(VmaAllocator allocator, uint32_t memoryType, VkDeviceMemory memory, VkDeviceSize size)
Callback function called before vkFreeMemory.
Definition: vk_mem_alloc.h:403
void vmaMakePoolAllocationsLost(VmaAllocator allocator, VmaPool pool, size_t *pLostAllocationCount)
Marks all allocations in given pool as lost if they are not used in current frame or VmaPoolCreateInf...
const VkAllocationCallbacks * pAllocationCallbacks
Custom CPU memory allocation callbacks.
Definition: vk_mem_alloc.h:475
VkFlags VmaPoolCreateFlags
Definition: vk_mem_alloc.h:796
const VmaVulkanFunctions * pVulkanFunctions
Pointers to Vulkan functions. Can be null if you leave define VMA_STATIC_VULKAN_FUNCTIONS 1...
Definition: vk_mem_alloc.h:522
Description of a Allocator to be created.
Definition: vk_mem_alloc.h:457
VkDeviceSize preferredSmallHeapBlockSize
Preferred size of a single VkDeviceMemory block to be allocated from small heaps <= 512 MB...
Definition: vk_mem_alloc.h:472
VkDeviceSize allocationSizeMax
Definition: vk_mem_alloc.h:587
PFN_vkBindImageMemory vkBindImageMemory
Definition: vk_mem_alloc.h:447
VkFlags VmaAllocatorFlags
Definition: vk_mem_alloc.h:433
VkDeviceSize unusedBytes
Total number of bytes occupied by unused ranges.
Definition: vk_mem_alloc.h:586
Statistics returned by function vmaDefragment().
Definition: vk_mem_alloc.h:1079
uint32_t frameInUseCount
Maximum number of additional frames that are in use at the same time as current frame.
Definition: vk_mem_alloc.h:492
VmaStatInfo total
Definition: vk_mem_alloc.h:596
uint32_t deviceMemoryBlocksFreed
Number of empty VkDeviceMemory objects that have been released to the system.
Definition: vk_mem_alloc.h:1087
VmaAllocationCreateFlags flags
Use VmaAllocationCreateFlagBits enum.
Definition: vk_mem_alloc.h:710
VkDeviceSize maxBytesToMove
Maximum total numbers of bytes that can be copied while moving allocations to different places...
Definition: vk_mem_alloc.h:1070
PFN_vkGetBufferMemoryRequirements vkGetBufferMemoryRequirements
Definition: vk_mem_alloc.h:448
VkResult vmaAllocateMemoryForBuffer(VmaAllocator allocator, VkBuffer buffer, const VmaAllocationCreateInfo *pCreateInfo, VmaAllocation *pAllocation, VmaAllocationInfo *pAllocationInfo)
VkDevice device
Vulkan device.
Definition: vk_mem_alloc.h:466
Describes parameter of created VmaPool.
Definition: vk_mem_alloc.h:800
struct VmaPoolStats VmaPoolStats
Describes parameter of existing VmaPool.
VkDeviceSize size
Size of this allocation, in bytes.
Definition: vk_mem_alloc.h:932
void vmaFreeMemory(VmaAllocator allocator, VmaAllocation allocation)
Frees memory previously allocated using vmaAllocateMemory(), vmaAllocateMemoryForBuffer(), or vmaAllocateMemoryForImage().
PFN_vkUnmapMemory vkUnmapMemory
Definition: vk_mem_alloc.h:445
VkResult vmaCreateBuffer(VmaAllocator allocator, const VkBufferCreateInfo *pBufferCreateInfo, const VmaAllocationCreateInfo *pAllocationCreateInfo, VkBuffer *pBuffer, VmaAllocation *pAllocation, VmaAllocationInfo *pAllocationInfo)
VkResult vmaAllocateMemory(VmaAllocator allocator, const VkMemoryRequirements *pVkMemoryRequirements, const VmaAllocationCreateInfo *pCreateInfo, VmaAllocation *pAllocation, VmaAllocationInfo *pAllocationInfo)
General purpose memory allocation.
void * pUserData
Custom general-purpose pointer that will be stored in VmaAllocation, can be read as VmaAllocationInfo...
Definition: vk_mem_alloc.h:729
size_t minBlockCount
Minimum number of blocks to be always allocated in this pool, even if they stay empty.
Definition: vk_mem_alloc.h:816
size_t allocationCount
Number of VmaAllocation objects created from this pool that were not destroyed or lost...
Definition: vk_mem_alloc.h:852
uint32_t memoryTypeIndex
Vulkan memory type index to allocate this pool from.
Definition: vk_mem_alloc.h:803
void vmaBuildStatsString(VmaAllocator allocator, char **ppStatsString, VkBool32 detailedMap)
Builds and returns statistics as string in JSON format.
struct VmaVulkanFunctions VmaVulkanFunctions
Pointers to some Vulkan functions - a subset used by the library.
Definition: vk_mem_alloc.h:703
Optional configuration parameters to be passed to function vmaDefragment().
Definition: vk_mem_alloc.h:1065
VkResult vmaCreatePool(VmaAllocator allocator, const VmaPoolCreateInfo *pCreateInfo, VmaPool *pPool)
Allocates Vulkan device memory and creates VmaPool object.
Definition: vk_mem_alloc.h:774
VkDeviceSize bytesFreed
Total number of bytes that have been released to the system by freeing empty VkDeviceMemory objects...
Definition: vk_mem_alloc.h:1083
PFN_vkBindBufferMemory vkBindBufferMemory
Definition: vk_mem_alloc.h:446
void vmaSetCurrentFrameIndex(VmaAllocator allocator, uint32_t frameIndex)
Sets index of the current frame.
General statistics from current state of Allocator.
Definition: vk_mem_alloc.h:592
VkResult vmaCreateAllocator(const VmaAllocatorCreateInfo *pCreateInfo, VmaAllocator *pAllocator)
Creates Allocator object.
VkResult vmaAllocateMemoryForImage(VmaAllocator allocator, VkImage image, const VmaAllocationCreateInfo *pCreateInfo, VmaAllocation *pAllocation, VmaAllocationInfo *pAllocationInfo)
Function similar to vmaAllocateMemoryForBuffer().
Set this flag to use a memory that will be persistently mapped and retrieve pointer to it...
Definition: vk_mem_alloc.h:683
uint32_t allocationsMoved
Number of allocations that have been moved to different places.
Definition: vk_mem_alloc.h:1085
VmaMemoryUsage
Definition: vk_mem_alloc.h:631
void vmaDestroyAllocator(VmaAllocator allocator)
Destroys allocator object.
VkMemoryPropertyFlags requiredFlags
Flags that must be set in a Memory Type chosen for an allocation.
Definition: vk_mem_alloc.h:721
Allocator and all objects created from it will not be synchronized internally, so you must guarantee ...
Definition: vk_mem_alloc.h:429
void vmaCalculateStats(VmaAllocator allocator, VmaStats *pStats)
Retrieves statistics from current state of the Allocator.
VmaAllocatorFlagBits
Flags for created VmaAllocator.
Definition: vk_mem_alloc.h:424
void vmaSetAllocationUserData(VmaAllocator allocator, VmaAllocation allocation, void *pUserData)
Sets pUserData in given allocation to new value.
VkDeviceSize unusedRangeSizeMax
Size of the largest continuous free memory region.
Definition: vk_mem_alloc.h:862
PFN_vkGetPhysicalDeviceMemoryProperties vkGetPhysicalDeviceMemoryProperties
Definition: vk_mem_alloc.h:441
Calculated statistics of memory usage in entire allocator.
Definition: vk_mem_alloc.h:575
VkDeviceSize blockSize
Size of a single VkDeviceMemory block to be allocated as part of this pool, in bytes.
Definition: vk_mem_alloc.h:811
Set of callbacks that the library will call for vkAllocateMemory and vkFreeMemory.
Definition: vk_mem_alloc.h:416
VkDeviceSize unusedRangeSizeMin
Definition: vk_mem_alloc.h:588
PFN_vmaFreeDeviceMemoryFunction pfnFree
Optional, can be null.
Definition: vk_mem_alloc.h:420
VkResult vmaMapPersistentlyMappedMemory(VmaAllocator allocator)
Maps back persistently mapped memory of types that are HOST_COHERENT and DEVICE_LOCAL.
VmaPoolCreateFlags flags
Use combination of VmaPoolCreateFlagBits.
Definition: vk_mem_alloc.h:806
struct VmaAllocatorCreateInfo VmaAllocatorCreateInfo
Description of a Allocator to be created.
void(VKAPI_PTR * PFN_vmaAllocateDeviceMemoryFunction)(VmaAllocator allocator, uint32_t memoryType, VkDeviceMemory memory, VkDeviceSize size)
Callback function called after successful vkAllocateMemory.
Definition: vk_mem_alloc.h:397
VmaMemoryUsage usage
Intended usage of memory.
Definition: vk_mem_alloc.h:716
Definition: vk_mem_alloc.h:707
uint32_t blockCount
Number of VkDeviceMemory Vulkan memory blocks allocated.
Definition: vk_mem_alloc.h:578
PFN_vkFreeMemory vkFreeMemory
Definition: vk_mem_alloc.h:443
size_t maxBlockCount
Maximum number of blocks that can be allocated in this pool.
Definition: vk_mem_alloc.h:824
const VmaDeviceMemoryCallbacks * pDeviceMemoryCallbacks
Informative callbacks for vkAllocateMemory, vkFreeMemory.
Definition: vk_mem_alloc.h:478
size_t unusedRangeCount
Number of continuous memory ranges in the pool not used by any VmaAllocation.
Definition: vk_mem_alloc.h:855
VmaPool pool
Pool that this allocation should be created in.
Definition: vk_mem_alloc.h:734
const VkDeviceSize * pHeapSizeLimit
Either NULL or a pointer to an array of limits on maximum number of bytes that can be allocated out o...
Definition: vk_mem_alloc.h:510
VmaStatInfo memoryType[VK_MAX_MEMORY_TYPES]
Definition: vk_mem_alloc.h:594
VkDeviceSize allocationSizeMin
Definition: vk_mem_alloc.h:587
struct VmaAllocationCreateInfo VmaAllocationCreateInfo
PFN_vkCreateImage vkCreateImage
Definition: vk_mem_alloc.h:452
VkResult vmaMapMemory(VmaAllocator allocator, VmaAllocation allocation, void **ppData)
PFN_vmaAllocateDeviceMemoryFunction pfnAllocate
Optional, can be null.
Definition: vk_mem_alloc.h:418
Definition: vk_mem_alloc.h:701
PFN_vkDestroyBuffer vkDestroyBuffer
Definition: vk_mem_alloc.h:451
uint32_t frameInUseCount
Maximum number of additional frames that are in use at the same time as current frame.
Definition: vk_mem_alloc.h:838
VmaAllocatorFlags flags
Flags for created allocator. Use VmaAllocatorFlagBits enum.
Definition: vk_mem_alloc.h:460
void vmaGetPhysicalDeviceProperties(VmaAllocator allocator, const VkPhysicalDeviceProperties **ppPhysicalDeviceProperties)
void * pUserData
Custom general-purpose pointer that was passed as VmaAllocationCreateInfo::pUserData or set using vma...
Definition: vk_mem_alloc.h:943
Set this flag if the allocation should have its own memory block.
Definition: vk_mem_alloc.h:662
VkDeviceSize preferredLargeHeapBlockSize
Preferred size of a single VkDeviceMemory block to be allocated from large heaps. ...
Definition: vk_mem_alloc.h:469
VkDeviceSize allocationSizeAvg
Definition: vk_mem_alloc.h:587
VkDeviceSize usedBytes
Total number of bytes occupied by all allocations.
Definition: vk_mem_alloc.h:584
Describes parameter of existing VmaPool.
Definition: vk_mem_alloc.h:843
Memory will be mapped on host. Could be used for transfer to/from device.
Definition: vk_mem_alloc.h:639
void vmaGetMemoryProperties(VmaAllocator allocator, const VkPhysicalDeviceMemoryProperties **ppPhysicalDeviceMemoryProperties)
struct VmaStats VmaStats
General statistics from current state of Allocator.
VkDeviceSize offset
Offset into deviceMemory object to the beginning of this allocation, in bytes. (deviceMemory, offset) pair is unique to this allocation.
Definition: vk_mem_alloc.h:927
VkDeviceSize bytesMoved
Total number of bytes that have been copied while moving allocations to different places...
Definition: vk_mem_alloc.h:1081
VkResult vmaDefragment(VmaAllocator allocator, VmaAllocation *pAllocations, size_t allocationCount, VkBool32 *pAllocationsChanged, const VmaDefragmentationInfo *pDefragmentationInfo, VmaDefragmentationStats *pDefragmentationStats)
Compacts memory by moving allocations.
Pointers to some Vulkan functions - a subset used by the library.
Definition: vk_mem_alloc.h:439
struct VmaDeviceMemoryCallbacks VmaDeviceMemoryCallbacks
Set of callbacks that the library will call for vkAllocateMemory and vkFreeMemory.
uint32_t unusedRangeCount
Number of free ranges of memory between allocations.
Definition: vk_mem_alloc.h:582
VkFlags VmaAllocationCreateFlags
Definition: vk_mem_alloc.h:705
uint32_t allocationCount
Number of VmaAllocation allocation objects allocated.
Definition: vk_mem_alloc.h:580
PFN_vkGetImageMemoryRequirements vkGetImageMemoryRequirements
Definition: vk_mem_alloc.h:449
PFN_vkDestroyImage vkDestroyImage
Definition: vk_mem_alloc.h:453
VmaPoolCreateFlagBits
Flags to be passed as VmaPoolCreateInfo::flags.
Definition: vk_mem_alloc.h:765
void * pMappedData
Pointer to the beginning of this allocation as mapped data. Null if this alloaction is not persistent...
Definition: vk_mem_alloc.h:938
void vmaFreeStatsString(VmaAllocator allocator, char *pStatsString)
No intended memory usage specified.
Definition: vk_mem_alloc.h:634
PFN_vkAllocateMemory vkAllocateMemory
Definition: vk_mem_alloc.h:442
void vmaCreateLostAllocation(VmaAllocator allocator, VmaAllocation *pAllocation)
Creates new allocation that is in lost state from the beginning.
Definition: vk_mem_alloc.h:646
Parameters of VmaAllocation objects, that can be retrieved using function vmaGetAllocationInfo().
Definition: vk_mem_alloc.h:908
Memory will be used for frequent (dynamic) updates from host and reads on device (upload).
Definition: vk_mem_alloc.h:642
VmaAllocationCreateFlagBits
Flags to be passed as VmaAllocationCreateInfo::flags.
Definition: vk_mem_alloc.h:650
VkDeviceSize unusedRangeSizeAvg
Definition: vk_mem_alloc.h:588
Definition: vk_mem_alloc.h:431
struct VmaAllocationInfo VmaAllocationInfo
Parameters of VmaAllocation objects, that can be retrieved using function vmaGetAllocationInfo().
void vmaGetMemoryTypeProperties(VmaAllocator allocator, uint32_t memoryTypeIndex, VkMemoryPropertyFlags *pFlags)
Given Memory Type Index, returns Property Flags of this memory type.
Set this flag to only try to allocate from existing VkDeviceMemory blocks and never create new such b...
Definition: vk_mem_alloc.h:673
Memory will be used on device only, so faster access from the device is preferred. No need to be mappable on host.
Definition: vk_mem_alloc.h:636
struct VmaStatInfo VmaStatInfo
Calculated statistics of memory usage in entire allocator.
void vmaUnmapMemory(VmaAllocator allocator, VmaAllocation allocation)
VmaStatInfo memoryHeap[VK_MAX_MEMORY_HEAPS]
Definition: vk_mem_alloc.h:595
struct VmaDefragmentationStats VmaDefragmentationStats
Statistics returned by function vmaDefragment().
void vmaDestroyPool(VmaAllocator allocator, VmaPool pool)
Destroys VmaPool object and frees Vulkan device memory.
VkDeviceSize unusedSize
Total number of bytes in the pool not used by any VmaAllocation.
Definition: vk_mem_alloc.h:849
VkDeviceSize unusedRangeSizeMax
Definition: vk_mem_alloc.h:588
Use this flag if you always allocate only buffers and linear images or only optimal images out of thi...
Definition: vk_mem_alloc.h:792
void vmaDestroyBuffer(VmaAllocator allocator, VkBuffer buffer, VmaAllocation allocation)
Destroys Vulkan buffer and frees allocated memory.
uint32_t memoryType
Memory type index that this allocation was allocated from.
Definition: vk_mem_alloc.h:913
struct VmaPoolCreateInfo VmaPoolCreateInfo
Describes parameter of created VmaPool.