From 0519e66f426d13d06b4172f29a5476831382f79c Mon Sep 17 00:00:00 2001
From: Jeremy Gebben <jeremyg@lunarg.com>
Date: Thu, 21 Mar 2024 14:56:48 -0600
Subject: [PATCH] utils: Add custom containers from vvl

---
 include/CMakeLists.txt                        |    8 +-
 .../vulkan/utility/vk_small_containers.hpp    |  712 ++++++
 .../vulkan/utility/vk_sparse_range_map.hpp    | 2033 +++++++++++++++++
 scripts/gn/stub.cpp                           |    4 +-
 tests/CMakeLists.txt                          |    8 +-
 tests/small_containers.cpp                    |  415 ++++
 tests/sparse_range_map.cpp                    |   43 +
 7 files changed, 3216 insertions(+), 7 deletions(-)
 create mode 100644 include/vulkan/utility/vk_small_containers.hpp
 create mode 100644 include/vulkan/utility/vk_sparse_range_map.hpp
 create mode 100644 tests/small_containers.cpp
 create mode 100644 tests/sparse_range_map.cpp

diff --git a/include/CMakeLists.txt b/include/CMakeLists.txt
index 58c48e9..8a8a2c6 100644
--- a/include/CMakeLists.txt
+++ b/include/CMakeLists.txt
@@ -1,6 +1,6 @@
-# Copyright 2023 The Khronos Group Inc.
-# Copyright 2023 Valve Corporation
-# Copyright 2023 LunarG, Inc.
+# Copyright 2023-2024 The Khronos Group Inc.
+# Copyright 2023-2024 Valve Corporation
+# Copyright 2023-2024 LunarG, Inc.
 #
 # SPDX-License-Identifier: Apache-2.0
 target_include_directories(VulkanLayerSettings PUBLIC $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}>)
@@ -29,6 +29,8 @@ if (CMAKE_VERSION VERSION_GREATER_EQUAL "3.19")
         vulkan/utility/vk_concurrent_unordered_map.hpp
         vulkan/utility/vk_dispatch_table.h
         vulkan/utility/vk_format_utils.h
+        vulkan/utility/vk_small_containers.hpp
+        vulkan/utility/vk_sparse_range_map.hpp
         vulkan/utility/vk_struct_helper.hpp
     )
 endif()
diff --git a/include/vulkan/utility/vk_small_containers.hpp b/include/vulkan/utility/vk_small_containers.hpp
new file mode 100644
index 0000000..0c0786d
--- /dev/null
+++ b/include/vulkan/utility/vk_small_containers.hpp
@@ -0,0 +1,712 @@
+/* Copyright (c) 2015-2017, 2019-2024 The Khronos Group Inc.
+ * Copyright (c) 2015-2017, 2019-2024 Valve Corporation
+ * Copyright (c) 2015-2017, 2019-2024 LunarG, Inc.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ */
+
+#pragma once
+
+#include <cassert>
+#include <unordered_map>
+#include <unordered_set>
+
+namespace vku {
+namespace small {
+
+// A vector class with "small string optimization" -- meaning that the class contains a fixed working store for N elements.
+// Useful in in situations where the needed size is unknown, but the typical size is known  If size increases beyond the
+// fixed capacity, a dynamically allocated working store is created.
+//
+// NOTE: Unlike std::vector which only requires T to be CopyAssignable and CopyConstructable, small::vector requires T to be
+//       MoveAssignable and MoveConstructable
+// NOTE: Unlike std::vector, iterators are invalidated by move assignment between small::vector objects effectively the
+//       "small string" allocation functions as an incompatible allocator.
+template <typename T, size_t N, typename SizeType = uint32_t>
+class vector {
+  public:
+    using value_type = T;
+    using reference = value_type &;
+    using const_reference = const value_type &;
+    using pointer = value_type *;
+    using const_pointer = const value_type *;
+    using iterator = pointer;
+    using const_iterator = const_pointer;
+    using size_type = SizeType;
+    static const size_type kSmallCapacity = N;
+    static const size_type kMaxCapacity = std::numeric_limits<size_type>::max();
+    static_assert(N <= kMaxCapacity, "size must be less than size_type::max");
+
+    vector() : size_(0), capacity_(N), working_store_(GetSmallStore()) {}
+
+    vector(std::initializer_list<T> list) : size_(0), capacity_(N), working_store_(GetSmallStore()) { PushBackFrom(list); }
+
+    vector(const vector &other) : size_(0), capacity_(N), working_store_(GetSmallStore()) { PushBackFrom(other); }
+
+    vector(vector &&other) : size_(0), capacity_(N), working_store_(GetSmallStore()) {
+        if (other.large_store_) {
+            MoveLargeStore(other);
+        } else {
+            PushBackFrom(std::move(other));
+        }
+        // Per the spec, when constructing from other, other is guaranteed to be empty after the constructor runs
+        other.clear();
+    }
+
+    vector(size_type size, const value_type &value = value_type()) : size_(0), capacity_(N), working_store_(GetSmallStore()) {
+        reserve(size);
+        auto dest = GetWorkingStore();
+        for (size_type i = 0; i < size; i++) {
+            new (dest) value_type(value);
+            ++dest;
+        }
+        size_ = size;
+    }
+
+    ~vector() { clear(); }
+
+    bool operator==(const vector &rhs) const {
+        if (size_ != rhs.size_) return false;
+        auto value = begin();
+        for (const auto &rh_value : rhs) {
+            if (!(*value == rh_value)) {
+                return false;
+            }
+            ++value;
+        }
+        return true;
+    }
+
+    bool operator!=(const vector &rhs) const { return !(*this == rhs); }
+
+    vector &operator=(const vector &other) {
+        if (this != &other) {
+            if (other.size_ > capacity_) {
+                // Calling reserve would move construct and destroy all current contents, so just clear them before calling
+                // PushBackFrom (which does a reserve vs. the now empty this)
+                clear();
+                PushBackFrom(other);
+            } else {
+                // The copy will fit into the current allocation
+                auto dest = GetWorkingStore();
+                auto source = other.GetWorkingStore();
+
+                const auto overlap = std::min(size_, other.size_);
+                // Copy assign anywhere we have objects in this
+                // Note: usually cheaper than destruct/construct
+                for (size_type i = 0; i < overlap; i++) {
+                    dest[i] = source[i];
+                }
+
+                // Copy construct anywhere we *don't* have objects in this
+                for (size_type i = overlap; i < other.size_; i++) {
+                    new (dest + i) value_type(source[i]);
+                }
+
+                // Any entries in this past other_size_ must be cleaned up...
+                for (size_type i = other.size_; i < size_; i++) {
+                    dest[i].~value_type();
+                }
+                size_ = other.size_;
+            }
+        }
+        return *this;
+    }
+
+    vector &operator=(vector &&other) {
+        if (this != &other) {
+            // Note: move assign doesn't require other to become empty (as does move construction)
+            //       so we'll leave other alone except in the large store case, while moving the object
+            //       *in* the vector from other
+            if (other.large_store_) {
+                // Moving the other large store intact is probably best, even if we have to destroy everything in this.
+                clear();
+                MoveLargeStore(other);
+            } else if (other.size_ > capacity_) {
+                // If we'd have to reallocate, just clean up minimally and copy normally
+                clear();
+                PushBackFrom(std::move(other));
+            } else {
+                // The copy will fit into the current allocation
+                auto dest = GetWorkingStore();
+                auto source = other.GetWorkingStore();
+
+                const auto overlap = std::min(size_, other.size_);
+
+                // Move assign where we have objects in this
+                // Note: usually cheaper than destruct/construct
+                for (size_type i = 0; i < overlap; i++) {
+                    dest[i] = std::move(source[i]);
+                }
+
+                // Move construct where we *don't* have objects in this
+                for (size_type i = overlap; i < other.size_; i++) {
+                    new (dest + i) value_type(std::move(source[i]));
+                }
+
+                // Any entries in this past other_size_ must be cleaned up...
+                for (size_type i = other.size_; i < size_; i++) {
+                    dest[i].~value_type();
+                }
+                size_ = other.size_;
+            }
+        }
+        return *this;
+    }
+
+    reference operator[](size_type pos) {
+        assert(pos < size_);
+        return GetWorkingStore()[pos];
+    }
+    const_reference operator[](size_type pos) const {
+        assert(pos < size_);
+        return GetWorkingStore()[pos];
+    }
+
+    // Like std::vector:: calling front or back on an empty container causes undefined behavior
+    reference front() {
+        assert(size_ > 0);
+        return GetWorkingStore()[0];
+    }
+    const_reference front() const {
+        assert(size_ > 0);
+        return GetWorkingStore()[0];
+    }
+    reference back() {
+        assert(size_ > 0);
+        return GetWorkingStore()[size_ - 1];
+    }
+    const_reference back() const {
+        assert(size_ > 0);
+        return GetWorkingStore()[size_ - 1];
+    }
+
+    bool empty() const { return size_ == 0; }
+
+    template <class... Args>
+    void emplace_back(Args &&...args) {
+        assert(size_ < kMaxCapacity);
+        reserve(size_ + 1);
+        new (GetWorkingStore() + size_) value_type(args...);
+        size_++;
+    }
+
+    // Note: probably should update this to reflect C++23 ranges
+    template <typename Container>
+    void PushBackFrom(const Container &from) {
+        assert(from.size() <= kMaxCapacity);
+        assert(size_ <= kMaxCapacity - from.size());
+        const size_type new_size = size_ + static_cast<size_type>(from.size());
+        reserve(new_size);
+
+        auto dest = GetWorkingStore() + size_;
+        for (const auto &element : from) {
+            new (dest) value_type(element);
+            ++dest;
+        }
+        size_ = new_size;
+    }
+
+    template <typename Container>
+    void PushBackFrom(Container &&from) {
+        assert(from.size() < kMaxCapacity);
+        const size_type new_size = size_ + static_cast<size_type>(from.size());
+        reserve(new_size);
+
+        auto dest = GetWorkingStore() + size_;
+        for (auto &element : from) {
+            new (dest) value_type(std::move(element));
+            ++dest;
+        }
+        size_ = new_size;
+    }
+
+    void reserve(size_type new_cap) {
+        // Since this can't shrink, if we're growing we're newing
+        if (new_cap > capacity_) {
+            assert(capacity_ >= kSmallCapacity);
+            auto new_store = std::unique_ptr<BackingStore[]>(new BackingStore[new_cap]);
+            auto working_store = GetWorkingStore();
+            for (size_type i = 0; i < size_; i++) {
+                new (new_store[i].data) value_type(std::move(working_store[i]));
+                working_store[i].~value_type();
+            }
+            large_store_ = std::move(new_store);
+            assert(new_cap > kSmallCapacity);
+            capacity_ = new_cap;
+        }
+        UpdateWorkingStore();
+        // No shrink here.
+    }
+
+    void clear() {
+        // Keep clear minimal to optimize reset functions for enduring objects
+        // more work is deferred until destruction (freeing of large_store for example)
+        // and we intentionally *aren't* shrinking.  Callers that desire shrink semantics
+        // can call shrink_to_fit.
+        auto working_store = GetWorkingStore();
+        for (size_type i = 0; i < size_; i++) {
+            working_store[i].~value_type();
+        }
+        size_ = 0;
+    }
+
+    void resize(size_type count) {
+        struct ValueInitTag {  // tag to request value-initialization
+            explicit ValueInitTag() = default;
+        };
+        Resize(count, ValueInitTag{});
+    }
+
+    void resize(size_type count, const value_type &value) { Resize(count, value); }
+
+    void shrink_to_fit() {
+        if (size_ == 0) {
+            // shrink resets to small when empty
+            capacity_ = kSmallCapacity;
+            large_store_.reset();
+            UpdateWorkingStore();
+        } else if ((capacity_ > kSmallCapacity) && (capacity_ > size_)) {
+            auto source = GetWorkingStore();
+            // Keep the source from disappearing until the end of the function
+            auto old_store = std::unique_ptr<BackingStore[]>(std::move(large_store_));
+            assert(!large_store_);
+            if (size_ < kSmallCapacity) {
+                capacity_ = kSmallCapacity;
+            } else {
+                large_store_ = std::unique_ptr<BackingStore[]>(new BackingStore[size_]);
+                capacity_ = size_;
+            }
+            UpdateWorkingStore();
+            auto dest = GetWorkingStore();
+            for (size_type i = 0; i < size_; i++) {
+                dest[i] = std::move(source[i]);
+                source[i].~value_type();
+            }
+        }
+    }
+
+    inline iterator begin() { return GetWorkingStore(); }
+    inline const_iterator cbegin() const { return GetWorkingStore(); }
+    inline const_iterator begin() const { return GetWorkingStore(); }
+
+    inline iterator end() { return GetWorkingStore() + size_; }
+    inline const_iterator cend() const { return GetWorkingStore() + size_; }
+    inline const_iterator end() const { return GetWorkingStore() + size_; }
+    inline size_type size() const { return size_; }
+    auto capacity() const { return capacity_; }
+
+    inline pointer data() { return GetWorkingStore(); }
+    inline const_pointer data() const { return GetWorkingStore(); }
+
+  protected:
+    inline const_pointer ComputeWorkingStore() const {
+        assert(large_store_ || (capacity_ == kSmallCapacity));
+
+        const BackingStore *store = large_store_ ? large_store_.get() : small_store_;
+        return &store->object;
+    }
+    inline pointer ComputeWorkingStore() {
+        assert(large_store_ || (capacity_ == kSmallCapacity));
+
+        BackingStore *store = large_store_ ? large_store_.get() : small_store_;
+        return &store->object;
+    }
+
+    void UpdateWorkingStore() { working_store_ = ComputeWorkingStore(); }
+
+    inline const_pointer GetWorkingStore() const {
+        DbgWorkingStoreCheck();
+        return working_store_;
+    }
+    inline pointer GetWorkingStore() {
+        DbgWorkingStoreCheck();
+        return working_store_;
+    }
+
+    inline pointer GetSmallStore() { return &small_store_->object; }
+
+    union BackingStore {
+        BackingStore() {}
+        ~BackingStore() {}
+
+        uint8_t data[sizeof(value_type)];
+        value_type object;
+    };
+    size_type size_;
+    size_type capacity_;
+    BackingStore small_store_[N];
+    std::unique_ptr<BackingStore[]> large_store_;
+    value_type *working_store_;
+
+#ifndef NDEBUG
+    void DbgWorkingStoreCheck() const { assert(ComputeWorkingStore() == working_store_); }
+#else
+    void DbgWorkingStoreCheck() const {}
+#endif
+
+  private:
+    void MoveLargeStore(vector &other) {
+        assert(other.large_store_);
+        assert(other.capacity_ > kSmallCapacity);
+        // In move operations, from a small vector with a large store, we can move from it
+        large_store_ = std::move(other.large_store_);
+        capacity_ = other.capacity_;
+        size_ = other.size_;
+        UpdateWorkingStore();
+
+        // We've stolen other's large store, must leave it in a valid state
+        other.size_ = 0;
+        other.capacity_ = kSmallCapacity;
+        other.UpdateWorkingStore();
+    }
+
+    template <typename T2>
+    void Resize(size_type new_size, const T2 &value) {
+        if (new_size < size_) {
+            auto working_store = GetWorkingStore();
+            for (size_type i = new_size; i < size_; i++) {
+                working_store[i].~value_type();
+            }
+            size_ = new_size;
+        } else if (new_size > size_) {
+            reserve(new_size);
+            // if T2 != T and T is not DefaultInsertable, new values will be undefined
+            if constexpr (std::is_same_v<T2, T> || std::is_default_constructible_v<T>) {
+                for (size_type i = size_; i < new_size; ++i) {
+                    if constexpr (std::is_same_v<T2, T>) {
+                        emplace_back(value_type(value));
+                    } else if constexpr (std::is_default_constructible_v<T>) {
+                        emplace_back(value_type());
+                    }
+                }
+                assert(size() == new_size);
+            } else {
+                size_ = new_size;
+            }
+        }
+    }
+};
+
+// This is a wrapper around unordered_map that optimizes for the common case
+// of only containing a small number of elements. The first N elements are stored
+// inline in the object and don't require hashing or memory (de)allocation.
+
+template <typename Key, typename value_type, typename inner_container_type, typename value_type_helper, int N>
+class container_base {
+  protected:
+    bool small_data_allocated[N];
+    value_type small_data[N];
+
+    inner_container_type inner_cont;
+
+    value_type_helper helper;
+
+  public:
+    container_base() {
+        for (int i = 0; i < N; ++i) {
+            small_data_allocated[i] = false;
+        }
+    }
+
+    class iterator {
+        typedef typename inner_container_type::iterator inner_iterator;
+        friend class container_base<Key, value_type, inner_container_type, value_type_helper, N>;
+
+        container_base<Key, value_type, inner_container_type, value_type_helper, N> *parent;
+        int index;
+        inner_iterator it;
+
+      public:
+        iterator() {}
+
+        iterator operator++() {
+            if (index < N) {
+                index++;
+                while (index < N && !parent->small_data_allocated[index]) {
+                    index++;
+                }
+                if (index < N) {
+                    return *this;
+                }
+                it = parent->inner_cont.begin();
+                return *this;
+            }
+            ++it;
+            return *this;
+        }
+
+        bool operator==(const iterator &other) const {
+            if ((index < N) != (other.index < N)) {
+                return false;
+            }
+            if (index < N) {
+                return (index == other.index);
+            }
+            return it == other.it;
+        }
+
+        bool operator!=(const iterator &other) const { return !(*this == other); }
+
+        value_type &operator*() const {
+            if (index < N) {
+                return parent->small_data[index];
+            }
+            return *it;
+        }
+        value_type *operator->() const {
+            if (index < N) {
+                return &parent->small_data[index];
+            }
+            return &*it;
+        }
+    };
+
+    class const_iterator {
+        typedef typename inner_container_type::const_iterator inner_iterator;
+        friend class container_base<Key, value_type, inner_container_type, value_type_helper, N>;
+
+        const container_base<Key, value_type, inner_container_type, value_type_helper, N> *parent;
+        int index;
+        inner_iterator it;
+
+      public:
+        const_iterator() {}
+
+        const_iterator operator++() {
+            if (index < N) {
+                index++;
+                while (index < N && !parent->small_data_allocated[index]) {
+                    index++;
+                }
+                if (index < N) {
+                    return *this;
+                }
+                it = parent->inner_cont.begin();
+                return *this;
+            }
+            ++it;
+            return *this;
+        }
+
+        bool operator==(const const_iterator &other) const {
+            if ((index < N) != (other.index < N)) {
+                return false;
+            }
+            if (index < N) {
+                return (index == other.index);
+            }
+            return it == other.it;
+        }
+
+        bool operator!=(const const_iterator &other) const { return !(*this == other); }
+
+        const value_type &operator*() const {
+            if (index < N) {
+                return parent->small_data[index];
+            }
+            return *it;
+        }
+        const value_type *operator->() const {
+            if (index < N) {
+                return &parent->small_data[index];
+            }
+            return &*it;
+        }
+    };
+
+    iterator begin() {
+        iterator it;
+        it.parent = this;
+        // If index 0 is allocated, return it, otherwise use operator++ to find the first
+        // allocated element.
+        it.index = 0;
+        if (small_data_allocated[0]) {
+            return it;
+        }
+        ++it;
+        return it;
+    }
+
+    iterator end() {
+        iterator it;
+        it.parent = this;
+        it.index = N;
+        it.it = inner_cont.end();
+        return it;
+    }
+
+    const_iterator begin() const {
+        const_iterator it;
+        it.parent = this;
+        // If index 0 is allocated, return it, otherwise use operator++ to find the first
+        // allocated element.
+        it.index = 0;
+        if (small_data_allocated[0]) {
+            return it;
+        }
+        ++it;
+        return it;
+    }
+
+    const_iterator end() const {
+        const_iterator it;
+        it.parent = this;
+        it.index = N;
+        it.it = inner_cont.end();
+        return it;
+    }
+
+    bool contains(const Key &key) const {
+        for (int i = 0; i < N; ++i) {
+            if (small_data_allocated[i] && helper.compare_equal(small_data[i], key)) {
+                return true;
+            }
+        }
+        // check size() first to avoid hashing key unnecessarily.
+        if (inner_cont.size() == 0) {
+            return false;
+        }
+        return inner_cont.find(key) != inner_cont.end();
+    }
+
+    typename inner_container_type::size_type count(const Key &key) const { return contains(key) ? 1 : 0; }
+
+    std::pair<iterator, bool> insert(const value_type &value) {
+        for (int i = 0; i < N; ++i) {
+            if (small_data_allocated[i] && helper.compare_equal(small_data[i], value)) {
+                iterator it;
+                it.parent = this;
+                it.index = i;
+                return std::make_pair(it, false);
+            }
+        }
+        // check size() first to avoid hashing key unnecessarily.
+        auto iter = inner_cont.size() > 0 ? inner_cont.find(helper.get_key(value)) : inner_cont.end();
+        if (iter != inner_cont.end()) {
+            iterator it;
+            it.parent = this;
+            it.index = N;
+            it.it = iter;
+            return std::make_pair(it, false);
+        } else {
+            for (int i = 0; i < N; ++i) {
+                if (!small_data_allocated[i]) {
+                    small_data_allocated[i] = true;
+                    helper.assign(small_data[i], value);
+                    iterator it;
+                    it.parent = this;
+                    it.index = i;
+                    return std::make_pair(it, true);
+                }
+            }
+            iter = inner_cont.insert(value).first;
+            iterator it;
+            it.parent = this;
+            it.index = N;
+            it.it = iter;
+            return std::make_pair(it, true);
+        }
+    }
+
+    typename inner_container_type::size_type erase(const Key &key) {
+        for (int i = 0; i < N; ++i) {
+            if (small_data_allocated[i] && helper.compare_equal(small_data[i], key)) {
+                small_data_allocated[i] = false;
+                return 1;
+            }
+        }
+        return inner_cont.erase(key);
+    }
+
+    typename inner_container_type::size_type size() const {
+        auto size = inner_cont.size();
+        for (int i = 0; i < N; ++i) {
+            if (small_data_allocated[i]) {
+                size++;
+            }
+        }
+        return size;
+    }
+
+    bool empty() const {
+        for (int i = 0; i < N; ++i) {
+            if (small_data_allocated[i]) {
+                return false;
+            }
+        }
+        return inner_cont.size() == 0;
+    }
+
+    void clear() {
+        for (int i = 0; i < N; ++i) {
+            small_data_allocated[i] = false;
+        }
+        inner_cont.clear();
+    }
+};
+
+// Helper function objects to compare/assign/get keys in small_unordered_set/map.
+// This helps to abstract away whether value_type is a Key or a pair<Key, T>.
+template <typename MapType>
+class value_type_helper_map {
+    using PairType = typename MapType::value_type;
+    using Key = typename std::remove_const<typename PairType::first_type>::type;
+
+  public:
+    bool compare_equal(const PairType &lhs, const Key &rhs) const { return lhs.first == rhs; }
+    bool compare_equal(const PairType &lhs, const PairType &rhs) const { return lhs.first == rhs.first; }
+
+    void assign(PairType &lhs, const PairType &rhs) const {
+        // While the const_cast may be unsatisfactory, we are using small_data as
+        // stand-in for placement new and a small-block allocator, so the const_cast
+        // is minimal, contained, valid, and allows operators * and -> to avoid copies
+        const_cast<Key &>(lhs.first) = rhs.first;
+        lhs.second = rhs.second;
+    }
+
+    Key get_key(const PairType &value) const { return value.first; }
+};
+
+template <typename Key>
+class value_type_helper_set {
+  public:
+    bool compare_equal(const Key &lhs, const Key &rhs) const { return lhs == rhs; }
+
+    void assign(Key &lhs, const Key &rhs) const { lhs = rhs; }
+
+    Key get_key(const Key &value) const { return value; }
+};
+
+template <typename Key, typename T, int N = 1, typename Map = std::unordered_map<Key, T>>
+class unordered_map : public container_base<Key, typename Map::value_type, Map, value_type_helper_map<Map>, N> {
+  public:
+    T &operator[](const Key &key) {
+        for (int i = 0; i < N; ++i) {
+            if (this->small_data_allocated[i] && this->helper.compare_equal(this->small_data[i], key)) {
+                return this->small_data[i].second;
+            }
+        }
+        auto iter = this->inner_cont.find(key);
+        if (iter != this->inner_cont.end()) {
+            return iter->second;
+        } else {
+            for (int i = 0; i < N; ++i) {
+                if (!this->small_data_allocated[i]) {
+                    this->small_data_allocated[i] = true;
+                    this->helper.assign(this->small_data[i], {key, T()});
+
+                    return this->small_data[i].second;
+                }
+            }
+            return this->inner_cont[key];
+        }
+    }
+};
+
+template <typename Key, int N = 1, typename Set = std::unordered_set<Key>>
+class unordered_set : public container_base<Key, Key, Set, value_type_helper_set<Key>, N> {};
+
+}  // namespace small
+}  // namespace vku
diff --git a/include/vulkan/utility/vk_sparse_range_map.hpp b/include/vulkan/utility/vk_sparse_range_map.hpp
new file mode 100644
index 0000000..36b8460
--- /dev/null
+++ b/include/vulkan/utility/vk_sparse_range_map.hpp
@@ -0,0 +1,2033 @@
+/* Copyright (c) 2019-2024 The Khronos Group Inc.
+ * Copyright (c) 2019-2024 Valve Corporation
+ * Copyright (c) 2019-2024 LunarG, Inc.
+ * Copyright (C) 2019-2024 Google Inc.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ */
+#pragma once
+
+#include <algorithm>
+#include <array>
+#include <cassert>
+#include <limits>
+#include <map>
+#include <optional>
+#include <string>
+#include <sstream>
+#include <utility>
+#include <cstdint>
+#include <vulkan/utility/vk_small_containers.hpp>
+
+namespace vku {
+namespace sparse {
+// range_map
+//
+// Implements an ordered map of non-overlapping, non-empty ranges
+//
+template <typename Index>
+struct range {
+    using index_type = Index;
+    index_type begin;  // Inclusive lower bound of range
+    index_type end;    // Exlcusive upper bound of range
+
+    inline bool empty() const { return begin == end; }
+    inline bool valid() const { return begin <= end; }
+    inline bool invalid() const { return !valid(); }
+    inline bool non_empty() const { return begin < end; }  //  valid and !empty
+
+    inline bool is_prior_to(const range &other) const { return end == other.begin; }
+    inline bool is_subsequent_to(const range &other) const { return begin == other.end; }
+    inline bool includes(const index_type &index) const { return (begin <= index) && (index < end); }
+    inline bool includes(const range &other) const { return (begin <= other.begin) && (other.end <= end); }
+    inline bool excludes(const index_type &index) const { return (index < begin) || (end <= index); }
+    inline bool excludes(const range &other) const { return (other.end <= begin) || (end <= other.begin); }
+    inline bool intersects(const range &other) const { return includes(other.begin) || other.includes(begin); }
+    inline index_type distance() const { return end - begin; }
+
+    inline bool operator==(const range &rhs) const { return (begin == rhs.begin) && (end == rhs.end); }
+    inline bool operator!=(const range &rhs) const { return (begin != rhs.begin) || (end != rhs.end); }
+
+    inline range &operator-=(const index_type &offset) {
+        begin = begin - offset;
+        end = end - offset;
+        return *this;
+    }
+
+    inline range &operator+=(const index_type &offset) {
+        begin = begin + offset;
+        end = end + offset;
+        return *this;
+    }
+
+    inline range operator+(const index_type &offset) const { return range(begin + offset, end + offset); }
+
+    // for a reversible/transitive < operator compare first on begin and then end
+    // only less or begin is less or if end is less when begin is equal
+    bool operator<(const range &rhs) const {
+        bool result = false;
+        if (invalid()) {
+            // all invalid < valid, allows map/set validity check by looking at begin()->first
+            // all invalid are equal, thus only equal if this is invalid and rhs is valid
+            result = rhs.valid();
+        } else if (begin < rhs.begin) {
+            result = true;
+        } else if ((begin == rhs.begin) && (end < rhs.end)) {
+            result = true;  // Simple common case -- boundary case require equality check for correctness.
+        }
+        return result;
+    }
+
+    // use as "strictly less/greater than" to check for non-overlapping ranges
+    bool strictly_less(const range &rhs) const { return end <= rhs.begin; }
+    bool strictly_less(const index_type &index) const { return end <= index; }
+    bool strictly_greater(const range &rhs) const { return rhs.end <= begin; }
+    bool strictly_greater(const index_type &index) const { return index < begin; }
+
+    range &operator=(const range &rhs) {
+        begin = rhs.begin;
+        end = rhs.end;
+        return *this;
+    }
+
+    // Compute ranges intersection. Returns empty range on non-intersection
+    range operator&(const range &rhs) const {
+        if (includes(rhs.begin)) {
+            return range(rhs.begin, std::min(end, rhs.end));
+        } else if (rhs.includes(begin)) {
+            return range(begin, std::min(end, rhs.end));
+        }
+        return range();
+    }
+
+    index_type size() const { return end - begin; }
+    range() : begin(), end() {}
+    range(const index_type &begin_, const index_type &end_) : begin(begin_), end(end_) {}
+    range(const range &other) : begin(other.begin), end(other.end) {}
+};
+
+template <typename Range>
+class range_view {
+  public:
+    using index_type = typename Range::index_type;
+    class iterator {
+      public:
+        iterator &operator++() {
+            ++current;
+            return *this;
+        }
+        const index_type &operator*() const { return current; }
+        bool operator!=(const iterator &rhs) const { return current != rhs.current; }
+        iterator(index_type value) : current(value) {}
+
+      private:
+        index_type current;
+    };
+    range_view(const Range &range) : range_(range) {}
+    const iterator begin() const { return iterator(range_.begin); }
+    const iterator end() const { return iterator(range_.end); }
+
+  private:
+    const Range &range_;
+};
+
+template <typename Range>
+std::string string_range(const Range &range) {
+    std::stringstream ss;
+    ss << "[" << range.begin << ", " << range.end << ')';
+    return ss.str();
+}
+
+template <typename Range>
+std::string string_range_hex(const Range &range) {
+    std::stringstream ss;
+    ss << std::hex << "[0x" << range.begin << ", 0x" << range.end << ')';
+    return ss.str();
+}
+
+// Type parameters for the range_map(s)
+struct insert_range_no_split_bounds {
+    const static bool split_boundaries = false;
+};
+
+struct insert_range_split_bounds {
+    const static bool split_boundaries = true;
+};
+
+struct split_op_keep_both {
+    static constexpr bool keep_lower() { return true; }
+    static constexpr bool keep_upper() { return true; }
+};
+
+struct split_op_keep_lower {
+    static constexpr bool keep_lower() { return true; }
+    static constexpr bool keep_upper() { return false; }
+};
+
+struct split_op_keep_upper {
+    static constexpr bool keep_lower() { return false; }
+    static constexpr bool keep_upper() { return true; }
+};
+
+enum class value_precedence { prefer_source, prefer_dest };
+
+template <typename Iterator, typename Map, typename Range>
+Iterator split(Iterator in, Map &map, const Range &range);
+
+// The range based sparse map implemented on the ImplMap
+template <typename Key, typename T, typename RangeKey = range<Key>, typename ImplMap = std::map<RangeKey, T>>
+class range_map {
+  public:
+  protected:
+    using MapKey = RangeKey;
+    ImplMap impl_map_;
+    using ImplIterator = typename ImplMap::iterator;
+    using ImplConstIterator = typename ImplMap::const_iterator;
+
+  public:
+    using mapped_type = typename ImplMap::mapped_type;
+    using value_type = typename ImplMap::value_type;
+    using key_type = typename ImplMap::key_type;
+    using index_type = typename key_type::index_type;
+    using size_type = typename ImplMap::size_type;
+
+  protected:
+    template <typename ThisType>
+    using ConstCorrectImplIterator = decltype(std::declval<ThisType>().impl_begin());
+
+    template <typename ThisType, typename WrappedIterator = ConstCorrectImplIterator<ThisType>>
+    static WrappedIterator lower_bound_impl(ThisType &that, const key_type &key) {
+        if (key.valid()) {
+            // ImplMap doesn't give us what want with a direct query, it will give us the first entry contained (if any) in key,
+            // not the first entry intersecting key, so, first look for the the first entry that starts at or after key.begin
+            // with the operator > in range, we can safely use an empty range for comparison
+            auto lower = that.impl_map_.lower_bound(key_type(key.begin, key.begin));
+
+            // If there is a preceding entry it's possible that begin is included, as all we know is that lower.begin >= key.begin
+            // or lower is at end
+            if (!that.at_impl_begin(lower)) {
+                auto prev = lower;
+                --prev;
+                // If the previous entry includes begin (and we know key.begin > prev.begin) then prev is actually lower
+                if (key.begin < prev->first.end) {
+                    lower = prev;
+                }
+            }
+            return lower;
+        }
+        // Key is ill-formed
+        return that.impl_end();  // Point safely to nothing.
+    }
+
+    ImplIterator lower_bound_impl(const key_type &key) { return lower_bound_impl(*this, key); }
+
+    ImplConstIterator lower_bound_impl(const key_type &key) const { return lower_bound_impl(*this, key); }
+
+    template <typename ThisType, typename WrappedIterator = ConstCorrectImplIterator<ThisType>>
+    static WrappedIterator upper_bound_impl(ThisType &that, const key_type &key) {
+        if (key.valid()) {
+            // the upper bound is the first range that is full greater (upper.begin >= key.end
+            // we can get close by looking for the first to exclude key.end, then adjust to account for the fact that key.end is
+            // exclusive and we thus ImplMap::upper_bound may be off by one here, i.e. the previous may be the upper bound
+            auto upper = that.impl_map_.upper_bound(key_type(key.end, key.end));
+            if (!that.at_impl_end(upper) && (upper != that.impl_begin())) {
+                auto prev = upper;
+                --prev;
+                // We know key.end  is >= prev.begin, the only question is whether it's ==
+                if (prev->first.begin == key.end) {
+                    upper = prev;
+                }
+            }
+            return upper;
+        }
+        return that.impl_end();  // Point safely to nothing.
+    }
+
+    ImplIterator upper_bound_impl(const key_type &key) { return upper_bound_impl(*this, key); }
+
+    ImplConstIterator upper_bound_impl(const key_type &key) const { return upper_bound_impl(*this, key); }
+
+    ImplIterator impl_find(const key_type &key) { return impl_map_.find(key); }
+    ImplConstIterator impl_find(const key_type &key) const { return impl_map_.find(key); }
+    bool impl_not_found(const key_type &key) const { return impl_end() == impl_find(key); }
+
+    ImplIterator impl_end() { return impl_map_.end(); }
+    ImplConstIterator impl_end() const { return impl_map_.end(); }
+
+    ImplIterator impl_begin() { return impl_map_.begin(); }
+    ImplConstIterator impl_begin() const { return impl_map_.begin(); }
+
+    inline bool at_impl_end(const ImplIterator &pos) { return pos == impl_end(); }
+    inline bool at_impl_end(const ImplConstIterator &pos) const { return pos == impl_end(); }
+
+    inline bool at_impl_begin(const ImplIterator &pos) { return pos == impl_begin(); }
+    inline bool at_impl_begin(const ImplConstIterator &pos) const { return pos == impl_begin(); }
+
+    ImplIterator impl_erase(const ImplIterator &pos) { return impl_map_.erase(pos); }
+
+    template <typename Value>
+    ImplIterator impl_insert(const ImplIterator &hint, Value &&value) {
+        assert(impl_not_found(value.first));
+        assert(value.first.non_empty());
+        return impl_map_.emplace_hint(hint, std::forward<Value>(value));
+    }
+    ImplIterator impl_insert(const ImplIterator &hint, const key_type &key, const mapped_type &value) {
+        return impl_insert(hint, std::make_pair(key, value));
+    }
+
+    ImplIterator impl_insert(const ImplIterator &hint, const index_type &begin, const index_type &end, const mapped_type &value) {
+        return impl_insert(hint, key_type(begin, end), value);
+    }
+
+    template <typename SplitOp>
+    ImplIterator split_impl(const ImplIterator &split_it, const index_type &index, const SplitOp &) {
+        // Make sure contains the split point
+        if (!split_it->first.includes(index)) return split_it;  // If we don't have a valid split point, just return the iterator
+
+        const auto range = split_it->first;
+        key_type lower_range(range.begin, index);
+        if (lower_range.empty() && SplitOp::keep_upper()) {
+            return split_it;  // this is a noop we're keeping the upper half which is the same as split_it;
+        }
+        // Save the contents of it and erase it
+        auto value = split_it->second;
+        auto next_it = impl_map_.erase(split_it);  // Keep this, just in case the split point results in an empty "keep" set
+
+        if (lower_range.empty() && !SplitOp::keep_upper()) {
+            // This effectively an erase...
+            return next_it;
+        }
+        // Upper range cannot be empty
+        key_type upper_range(index, range.end);
+        key_type move_range;
+        key_type copy_range;
+
+        // Were either going to keep one or both of the split pieces.  If we keep both, we'll copy value to the upper,
+        // and move to the lower, and return the lower, else move to, and return the kept one.
+        if (SplitOp::keep_lower() && !lower_range.empty()) {
+            move_range = lower_range;
+            if (SplitOp::keep_upper()) {
+                copy_range = upper_range;  // only need a valid copy range if we keep both.
+            }
+        } else if (SplitOp::keep_upper()) {  // We're not keeping the lower split because it's either empty or not wanted
+            move_range = upper_range;        // this will be non_empty as index is included ( < end) in the original range)
+        }
+
+        // we insert from upper to lower because that's what emplace_hint can do in constant time. (not log time in C++11)
+        if (!copy_range.empty()) {
+            // We have a second range to create, so do it by copy
+            assert(impl_map_.find(copy_range) == impl_map_.end());
+            next_it = impl_map_.emplace_hint(next_it, std::make_pair(copy_range, value));
+        }
+
+        if (!move_range.empty()) {
+            // Whether we keep one or both, the one we return gets value moved to it, as the other one already has a copy
+            assert(impl_map_.find(move_range) == impl_map_.end());
+            next_it = impl_map_.emplace_hint(next_it, std::make_pair(move_range, std::move(value)));
+        }
+
+        // point to the beginning of the inserted elements (or the next from the erase
+        return next_it;
+    }
+
+    // do an ranged insert that splits existing ranges at the boundaries, and writes value to any non-initialized sub-ranges
+    range<ImplIterator> infill_and_split(const key_type &bounds, const mapped_type &value, ImplIterator lower, bool split_bounds) {
+        auto pos = lower;
+        if (at_impl_end(pos)) return range<ImplIterator>(pos, pos);  // defensive...
+
+        // Logic assumes we are starting at lower bound
+        assert(lower == lower_bound_impl(bounds));
+
+        // Trim/infil the beginning if needed
+        const auto first_begin = pos->first.begin;
+        if (bounds.begin > first_begin && split_bounds) {
+            pos = split_impl(pos, bounds.begin, split_op_keep_both());
+            lower = pos;
+            ++lower;
+            assert(lower == lower_bound_impl(bounds));
+        } else if (bounds.begin < first_begin) {
+            pos = impl_insert(pos, bounds.begin, first_begin, value);
+            lower = pos;
+            assert(lower == lower_bound_impl(bounds));
+        }
+
+        // in the trim case pos starts one before lower_bound, but that allows trimming a single entry range in loop.
+        // NOTE that the loop is trimming and infilling at pos + 1
+        while (!at_impl_end(pos) && pos->first.begin < bounds.end) {
+            auto last_end = pos->first.end;
+            // check for in-fill
+            ++pos;
+            if (at_impl_end(pos)) {
+                if (last_end < bounds.end) {
+                    // Gap after last entry in impl_map and before end,
+                    pos = impl_insert(pos, last_end, bounds.end, value);
+                    ++pos;  // advances to impl_end, as we're at upper boundary
+                    assert(at_impl_end(pos));
+                }
+            } else if (pos->first.begin != last_end) {
+                // we have a gap between last entry and current... fill, but not beyond bounds
+                if (bounds.includes(pos->first.begin)) {
+                    pos = impl_insert(pos, last_end, pos->first.begin, value);
+                    //  don't further advance pos, because we may need to split the next entry and thus can't skip it.
+                } else if (last_end < bounds.end) {
+                    // Non-zero length final gap in-bounds
+                    pos = impl_insert(pos, last_end, bounds.end, value);
+                    ++pos;  // advances back to the out of bounds entry which we inserted just before
+                    assert(!bounds.includes(pos->first.begin));
+                }
+            } else if (pos->first.includes(bounds.end)) {
+                if (split_bounds) {
+                    // extends past the end of the bounds range, snip to only include the bounded section
+                    // NOTE: this splits pos, but the upper half of the split should now be considered upper_bound
+                    // for the range
+                    pos = split_impl(pos, bounds.end, split_op_keep_both());
+                }
+                // advance to the upper half of the split which will be upper_bound  or to next which will both be out of bounds
+                ++pos;
+                assert(!bounds.includes(pos->first.begin));
+            }
+        }
+        // Return the current position which should be the upper_bound for bounds
+        assert(pos == upper_bound_impl(bounds));
+        return range<ImplIterator>(lower, pos);
+    }
+
+    template <typename TouchOp>
+    ImplIterator impl_erase_range(const key_type &bounds, ImplIterator lower, const TouchOp &touch_mapped_value) {
+        // Logic assumes we are starting at a valid lower bound
+        assert(!at_impl_end(lower));
+        assert(lower == lower_bound_impl(bounds));
+
+        // Trim/infill the beginning if needed
+        auto current = lower;
+        const auto first_begin = current->first.begin;
+        if (bounds.begin > first_begin) {
+            // Preserve the portion of lower bound excluded from bounds
+            if (current->first.end <= bounds.end) {
+                // If current ends within the erased bound we can discard the the upper portion of current
+                current = split_impl(current, bounds.begin, split_op_keep_lower());
+            } else {
+                // Keep the upper portion of current for the later split below
+                current = split_impl(current, bounds.begin, split_op_keep_both());
+            }
+            // Exclude the preserved portion
+            ++current;
+            assert(current == lower_bound_impl(bounds));
+        }
+
+        // Loop over completely contained entries and erase them
+        while (!at_impl_end(current) && (current->first.end <= bounds.end)) {
+            if (touch_mapped_value(current->second)) {
+                current = impl_erase(current);
+            } else {
+                ++current;
+            }
+        }
+
+        if (!at_impl_end(current) && current->first.includes(bounds.end)) {
+            // last entry extends past the end of the bounds range, snip to only erase the bounded section
+            current = split_impl(current, bounds.end, split_op_keep_both());
+            // test if lower_bound (eventually) computed in split_impl is not empty.
+            // If it is not empty, then it contains values inside the bounds range,
+            // they need to be touched
+            if ((current->first & bounds).non_empty()) {
+                if (touch_mapped_value(current->second)) {
+                    current = impl_erase(current);
+                } else {
+                    // make current point to upper bound
+                    ++current;
+                }
+            }
+        }
+
+        assert(current == upper_bound_impl(bounds));
+        return current;
+    }
+
+    template <typename ValueType, typename WrappedIterator_>
+    struct iterator_impl {
+      public:
+        friend class range_map;
+        using WrappedIterator = WrappedIterator_;
+
+      private:
+        WrappedIterator pos_;
+
+        // Create an iterator at a specific internal state -- only from the parent container
+        iterator_impl(const WrappedIterator &pos) : pos_(pos) {}
+
+      public:
+        iterator_impl() : iterator_impl(WrappedIterator()) {}
+        iterator_impl(const iterator_impl &other) : pos_(other.pos_) {}
+
+        iterator_impl &operator=(const iterator_impl &rhs) {
+            pos_ = rhs.pos_;
+            return *this;
+        }
+
+        inline bool operator==(const iterator_impl &rhs) const { return pos_ == rhs.pos_; }
+
+        inline bool operator!=(const iterator_impl &rhs) const { return pos_ != rhs.pos_; }
+
+        ValueType &operator*() const { return *pos_; }
+        ValueType *operator->() const { return &*pos_; }
+
+        iterator_impl &operator++() {
+            ++pos_;
+            return *this;
+        }
+
+        iterator_impl &operator--() {
+            --pos_;
+            return *this;
+        }
+
+        // To allow for iterator -> const_iterator construction
+        // NOTE: while it breaks strict encapsulation, it does so less than friend
+        const WrappedIterator &get_pos() const { return pos_; }
+    };
+
+  public:
+    using iterator = iterator_impl<value_type, ImplIterator>;
+
+    // The const iterator must be derived to allow the conversion from iterator, which iterator doesn't support
+    class const_iterator : public iterator_impl<const value_type, ImplConstIterator> {
+        using Base = iterator_impl<const value_type, ImplConstIterator>;
+        friend range_map;
+
+      public:
+        const_iterator &operator=(const const_iterator &other) {
+            Base::operator=(other);
+            return *this;
+        }
+        const_iterator(const const_iterator &other) : Base(other) {}
+        const_iterator(const iterator &it) : Base(ImplConstIterator(it.get_pos())) {}
+        const_iterator() : Base() {}
+
+      private:
+        const_iterator(const ImplConstIterator &pos) : Base(pos) {}
+    };
+
+  protected:
+    inline bool at_end(const iterator &it) { return at_impl_end(it.pos_); }
+    inline bool at_end(const const_iterator &it) const { return at_impl_end(it.pos_); }
+    inline bool at_begin(const iterator &it) { return at_impl_begin(it.pos_); }
+
+    template <typename That, typename Iterator>
+    static bool is_contiguous_impl(That *const that, const key_type &range, const Iterator &lower) {
+        // Search range or intersection is empty
+        if (lower == that->impl_end() || lower->first.excludes(range)) return false;
+
+        if (lower->first.includes(range)) {
+            return true;  // there is one entry that contains the whole key range
+        }
+
+        bool contiguous = true;
+        for (auto pos = lower; contiguous && pos != that->impl_end() && range.includes(pos->first.begin); ++pos) {
+            // if current doesn't cover the rest of the key range, check to see that the next is extant and abuts
+            if (pos->first.end < range.end) {
+                auto next = pos;
+                ++next;
+                contiguous = (next != that->impl_end()) && pos->first.is_prior_to(next->first);
+            }
+        }
+        return contiguous;
+    }
+
+  public:
+    iterator end() { return iterator(impl_map_.end()); }                          //  policy and bounds don't matter for end
+    const_iterator end() const { return const_iterator(impl_map_.end()); }        //  policy and bounds don't matter for end
+    iterator begin() { return iterator(impl_map_.begin()); }                      // with default policy, and thus no bounds
+    const_iterator begin() const { return const_iterator(impl_map_.begin()); }    // with default policy, and thus no bounds
+    const_iterator cbegin() const { return const_iterator(impl_map_.cbegin()); }  // with default policy, and thus no bounds
+    const_iterator cend() const { return const_iterator(impl_map_.cend()); }      // with default policy, and thus no bounds
+
+    iterator erase(const iterator &pos) {
+        assert(!at_end(pos));
+        return iterator(impl_erase(pos.pos_));
+    }
+
+    iterator erase(range<iterator> bounds) {
+        auto current = bounds.begin.pos_;
+        while (current != bounds.end.pos_) {
+            assert(!at_impl_end(current));
+            current = impl_map_.erase(current);
+        }
+        assert(current == bounds.end.pos_);
+        return current;
+    }
+
+    iterator erase(iterator first, iterator last) { return erase(range<iterator>(first, last)); }
+
+    // Before trying to erase a range, function touch_mapped_value is called on the mapped value.
+    // touch_mapped_value is allowed to have it's parameter type to be non const reference.
+    // If it returns true, regular erase will occur.
+    // Else, range is kept.
+    template <typename TouchOp>
+    iterator erase_range_or_touch(const key_type &bounds, const TouchOp &touch_mapped_value) {
+        auto lower = lower_bound_impl(bounds);
+
+        if (at_impl_end(lower) || !bounds.intersects(lower->first)) {
+            // There is nothing in this range lower bound is above bound
+            return iterator(lower);
+        }
+        auto next = impl_erase_range(bounds, lower, touch_mapped_value);
+        return iterator(next);
+    }
+
+    iterator erase_range(const key_type &bounds) {
+        return erase_range_or_touch(bounds, [](const auto &) { return true; });
+    }
+
+    void clear() { impl_map_.clear(); }
+
+    iterator find(const key_type &key) { return iterator(impl_map_.find(key)); }
+
+    const_iterator find(const key_type &key) const { return const_iterator(impl_map_.find(key)); }
+
+    iterator find(const index_type &index) {
+        auto lower = lower_bound(range<index_type>(index, index + 1));
+        if (!at_end(lower) && lower->first.includes(index)) {
+            return lower;
+        }
+        return end();
+    }
+
+    const_iterator find(const index_type &index) const {
+        auto lower = lower_bound(key_type(index, index + 1));
+        if (!at_end(lower) && lower->first.includes(index)) {
+            return lower;
+        }
+        return end();
+    }
+
+    iterator lower_bound(const key_type &key) { return iterator(lower_bound_impl(key)); }
+
+    const_iterator lower_bound(const key_type &key) const { return const_iterator(lower_bound_impl(key)); }
+
+    iterator upper_bound(const key_type &key) { return iterator(upper_bound_impl(key)); }
+
+    const_iterator upper_bound(const key_type &key) const { return const_iterator(upper_bound_impl(key)); }
+
+    range<iterator> bounds(const key_type &key) { return {lower_bound(key), upper_bound(key)}; }
+    range<const_iterator> cbounds(const key_type &key) const { return {lower_bound(key), upper_bound(key)}; }
+    range<const_iterator> bounds(const key_type &key) const { return cbounds(key); }
+
+    using insert_pair = std::pair<iterator, bool>;
+
+    // This is traditional no replacement insert.
+    insert_pair insert(const value_type &value) {
+        const auto &key = value.first;
+        if (!key.non_empty()) {
+            // It's an invalid key, early bail pointing to end
+            return std::make_pair(end(), false);
+        }
+
+        // Look for range conflicts (and an insertion point, which makes the lower_bound *not* wasted work)
+        // we don't have to check upper if just check that lower doesn't intersect (which it would if lower != upper)
+        auto lower = lower_bound_impl(key);
+        if (at_impl_end(lower) || !lower->first.intersects(key)) {
+            // range is not even partially overlapped, and lower is strictly > than key
+            auto impl_insert = impl_map_.emplace_hint(lower, value);
+            // auto impl_insert = impl_map_.emplace(value);
+            iterator wrap_it(impl_insert);
+            return std::make_pair(wrap_it, true);
+        }
+        // We don't replace
+        return std::make_pair(iterator(lower), false);
+    }
+
+    iterator insert(const_iterator hint, const value_type &value) {
+        bool hint_open;
+        ImplConstIterator impl_next = hint.pos_;
+        if (impl_map_.empty()) {
+            hint_open = true;
+        } else if (impl_next == impl_map_.cbegin()) {
+            hint_open = value.first.strictly_less(impl_next->first);
+        } else if (impl_next == impl_map_.cend()) {
+            auto impl_prev = impl_next;
+            --impl_prev;
+            hint_open = value.first.strictly_greater(impl_prev->first);
+        } else {
+            auto impl_prev = impl_next;
+            --impl_prev;
+            hint_open = value.first.strictly_greater(impl_prev->first) && value.first.strictly_less(impl_next->first);
+        }
+
+        if (!hint_open) {
+            // Hint was unhelpful, fall back to the non-hinted version
+            auto plain_insert = insert(value);
+            return plain_insert.first;
+        }
+
+        auto impl_insert = impl_map_.insert(impl_next, value);
+        return iterator(impl_insert);
+    }
+
+    // Try to insert value. If insertion failed, recursively split union of retrieved stored range with inserted range.
+    // Split at intersection of stored range and inserted range.
+    // Range intersection is merged using merge_op.
+    // Ranges before and after this intersection are recursively inserted.
+    // merge_pos should have this signature: (mapped_type& current_value, const mapped_type& new_value) -> void
+    template <typename MergeOp>
+    iterator split_and_merge_insert(const value_type &value, const MergeOp &merge_op) {
+        if (!value.first.non_empty()) {
+            return end();
+        }
+
+        if (auto [it, was_inserted] = insert(value); !was_inserted) {
+            // insert failed, so at least one stored range intersects with new range
+            const RangeKey it_range = it->first;
+            const auto &[inserted_range, insert_mapped_value] = value;
+            const RangeKey intersection = it_range & inserted_range;
+            // if intersection is empty or invalid, insertion should have succeeded
+            assert(intersection.non_empty());
+
+            const iterator split_point_it = split(it, *this, intersection);
+            // given it->first and instersection do intersect, split should have succeeded
+            assert(split_point_it != end());
+            // merge values at inserted range and retrieved range intersection
+            merge_op(split_point_it->second, insert_mapped_value);
+
+            // Recursively insert ranges before and after intersection
+            const RangeKey range_after_intersection(intersection.end, std::max(it_range.end, inserted_range.end));
+            const RangeKey range_before_intersection(std::min(it_range.begin, inserted_range.begin), intersection.begin);
+            split_and_merge_insert({range_after_intersection, insert_mapped_value}, merge_op);
+            if (range_before_intersection.non_empty()) {
+                return split_and_merge_insert({range_before_intersection, insert_mapped_value}, merge_op);
+            } else {
+                return split_point_it;
+            }
+        } else {
+            return it;
+        }
+    }
+
+    template <typename SplitOp>
+    iterator split(const iterator whole_it, const index_type &index, const SplitOp &split_op) {
+        auto split_it = split_impl(whole_it.pos_, index, split_op);
+        return iterator(split_it);
+    }
+
+    // The overwrite hint here is lower.... and if it's not right... this fails
+    template <typename Value>
+    iterator overwrite_range(const iterator &lower, Value &&value) {
+        // We're not robust to a bad hint, so detect it with extreme prejudice
+        // TODO: Add bad hint test to make this robust...
+        auto lower_impl = lower.pos_;
+        auto insert_hint = lower_impl;
+        if (!at_impl_end(lower_impl)) {
+            // If we're at end (and the hint is good, there's nothing to erase
+            assert(lower == lower_bound(value.first));
+            insert_hint = impl_erase_range(value.first, lower_impl, [](const auto &) { return true; });
+        }
+        auto inserted = impl_insert(insert_hint, std::forward<Value>(value));
+        return iterator(inserted);
+    }
+
+    template <typename Value>
+    iterator overwrite_range(Value &&value) {
+        auto lower = lower_bound(value.first);
+        return overwrite_range(lower, value);
+    }
+
+    bool empty() const { return impl_map_.empty(); }
+    size_type size() const { return impl_map_.size(); }
+
+    // For configuration/debug use // Use with caution...
+    ImplMap &get_implementation_map() { return impl_map_; }
+    const ImplMap &get_implementation_map() const { return impl_map_; }
+};
+
+template <typename Container>
+using const_correct_iterator = decltype(std::declval<Container>().begin());
+
+// The an array based small ordered map for range keys for use as the range map "ImplMap" as an alternate to std::map
+//
+// Assumes RangeKey::index_type is unsigned (TBD is it useful to generalize to unsigned?)
+// Assumes RangeKey implements begin, end, < and (TBD) from template range above
+template <typename Key, typename T, typename RangeKey = range<Key>, size_t N = 64, typename SmallIndex = uint8_t>
+class small_range_map {
+    using SmallRange = range<SmallIndex>;
+
+  public:
+    using mapped_type = T;
+    using key_type = RangeKey;
+    using value_type = std::pair<const key_type, mapped_type>;
+    using index_type = typename key_type::index_type;
+
+    using size_type = SmallIndex;
+    template <typename Map_, typename Value_>
+    struct IteratorImpl {
+      public:
+        using Map = Map_;
+        using Value = Value_;
+        friend Map;
+        Value *operator->() const { return map_->get_value(pos_); }
+        Value &operator*() const { return *(map_->get_value(pos_)); }
+        IteratorImpl &operator++() {
+            pos_ = map_->next_range(pos_);
+            return *this;
+        }
+        IteratorImpl &operator--() {
+            pos_ = map_->prev_range(pos_);
+            return *this;
+        }
+        IteratorImpl &operator=(const IteratorImpl &other) {
+            map_ = other.map_;
+            pos_ = other.pos_;
+            return *this;
+        }
+        bool operator==(const IteratorImpl &other) const {
+            if (at_end() && other.at_end()) {
+                return true;  // all ends are equal
+            }
+            return (map_ == other.map_) && (pos_ == other.pos_);
+        }
+        bool operator!=(const IteratorImpl &other) const { return !(*this == other); }
+
+        // At end()
+        IteratorImpl() : map_(nullptr), pos_(N) {}
+        IteratorImpl(const IteratorImpl &other) : map_(other.map_), pos_(other.pos_) {}
+
+        // Raw getters to allow for const_iterator conversion below
+        Map *get_map() const { return map_; }
+        SmallIndex get_pos() const { return pos_; }
+
+        bool at_end() const { return (map_ == nullptr) || (pos_ >= map_->get_limit()); }
+
+      protected:
+        IteratorImpl(Map *map, SmallIndex pos) : map_(map), pos_(pos) {}
+
+      private:
+        Map *map_;
+        SmallIndex pos_;  // the begin of the current small_range
+    };
+    using iterator = IteratorImpl<small_range_map, value_type>;
+
+    // The const iterator must be derived to allow the conversion from iterator, which iterator doesn't support
+    class const_iterator : public IteratorImpl<const small_range_map, const value_type> {
+        using Base = IteratorImpl<const small_range_map, const value_type>;
+        friend small_range_map;
+
+      public:
+        const_iterator(const iterator &it) : Base(it.get_map(), it.get_pos()) {}
+        const_iterator() : Base() {}
+
+      private:
+        const_iterator(const small_range_map *map, SmallIndex pos) : Base(map, pos) {}
+    };
+
+    iterator begin() {
+        // Either ranges of 0 is valid and begin is 0 and begin *or* it's invalid an points to the first valid range (or end)
+        return iterator(this, ranges_[0].begin);
+    }
+    const_iterator cbegin() const { return const_iterator(this, ranges_[0].begin); }
+    const_iterator begin() const { return cbegin(); }
+    iterator end() { return iterator(); }
+    const_iterator cend() const { return const_iterator(); }
+    const_iterator end() const { return cend(); }
+
+    void clear() {
+        const SmallRange clear_range(limit_, 0);
+        for (SmallIndex i = 0; i < limit_; ++i) {
+            auto &range = ranges_[i];
+            if (range.begin == i) {
+                // Clean up the backing store
+                destruct_value(i);
+            }
+            range = clear_range;
+        }
+        size_ = 0;
+    }
+
+    // Find entry with an exact key match (uncommon use case)
+    iterator find(const key_type &key) {
+        assert(in_bounds(key));
+        if (key.begin < limit_) {
+            const SmallIndex small_begin = static_cast<SmallIndex>(key.begin);
+            const auto &range = ranges_[small_begin];
+            if (range.begin == small_begin) {
+                const auto small_end = static_cast<SmallIndex>(key.end);
+                if (range.end == small_end) return iterator(this, small_begin);
+            }
+        }
+        return end();
+    }
+    const_iterator find(const key_type &key) const {
+        assert(in_bounds(key));
+        if (key.begin < limit_) {
+            const SmallIndex small_begin = static_cast<SmallIndex>(key.begin);
+            const auto &range = ranges_[small_begin];
+            if (range.begin == small_begin) {
+                const auto small_end = static_cast<SmallIndex>(key.end);
+                if (range.end == small_end) return const_iterator(this, small_begin);
+            }
+        }
+        return end();
+    }
+
+    iterator find(const index_type &index) {
+        if (index < get_limit()) {
+            const SmallIndex small_index = static_cast<SmallIndex>(index);
+            const auto &range = ranges_[small_index];
+            if (range.valid()) {
+                return iterator(this, range.begin);
+            }
+        }
+        return end();
+    }
+
+    const_iterator find(const index_type &index) const {
+        if (index < get_limit()) {
+            const SmallIndex small_index = static_cast<SmallIndex>(index);
+            const auto &range = ranges_[small_index];
+            if (range.valid()) {
+                return const_iterator(this, range.begin);
+            }
+        }
+        return end();
+    }
+
+    size_type size() const { return size_; }
+    bool empty() const { return 0 == size_; }
+
+    iterator erase(const_iterator pos) {
+        assert(pos.map_ == this);
+        return erase_impl(pos.get_pos());
+    }
+
+    iterator erase(iterator pos) {
+        assert(pos.map_ == this);
+        return erase_impl(pos.get_pos());
+    }
+
+    // Must be called with rvalue or lvalue of value_type
+    template <typename Value>
+    iterator emplace(Value &&value) {
+        const auto &key = value.first;
+        assert(in_bounds(key));
+        if (key.begin >= limit_) return end();  // Invalid key (end is checked in "is_open")
+        const SmallRange range(static_cast<SmallIndex>(key.begin), static_cast<SmallIndex>(key.end));
+        if (is_open(key)) {
+            // This needs to be the fast path, but I don't see how we can avoid the sanity checks above
+            for (auto i = range.begin; i < range.end; ++i) {
+                ranges_[i] = range;
+            }
+            // Update the next information for the previous unused slots (as stored in begin invalidly)
+            auto prev = range.begin;
+            while (prev > 0) {
+                --prev;
+                if (ranges_[prev].valid()) break;
+                ranges_[prev].begin = range.begin;
+            }
+            // Placement new into the storage interpreted as Value
+            construct_value(range.begin, value_type(std::forward<Value>(value)));
+            auto next = range.end;
+            // update the previous range information for the next unsed slots (as stored in end invalidly)
+            while (next < limit_) {
+                // End is exclusive... increment *after* update
+                if (ranges_[next].valid()) break;
+                ranges_[next].end = range.end;
+                ++next;
+            }
+            return iterator(this, range.begin);
+        } else {
+            // Can't insert into occupied ranges.
+            // if ranges_[key.begin] is valid then this is the collision (starting at .begin
+            // if it's invalid .begin points to the overlapping entry from is_open (or end if key was out of range)
+            return iterator(this, ranges_[range.begin].begin);
+        }
+    }
+
+    // As hint is going to be ignored, make it as lightweight as possible, by reference and no conversion construction
+    template <typename Value>
+    iterator emplace_hint([[maybe_unused]] const const_iterator &hint, Value &&value) {
+        // We have direct access so we can drop the hint
+        return emplace(std::forward<Value>(value));
+    }
+
+    template <typename Value>
+    iterator emplace_hint([[maybe_unused]] const iterator &hint, Value &&value) {
+        // We have direct access so we can drop the hint
+        return emplace(std::forward<Value>(value));
+    }
+
+    // Again, hint is going to be ignored, make it as lightweight as possible, by reference and no conversion construction
+    iterator insert([[maybe_unused]] const const_iterator &hint, const value_type &value) { return emplace(value); }
+    iterator insert([[maybe_unused]] const iterator &hint, const value_type &value) { return emplace(value); }
+
+    std::pair<iterator, bool> insert(const value_type &value) {
+        const auto &key = value.first;
+        assert(in_bounds(key));
+        if (key.begin >= limit_) return std::make_pair(end(), false);  // Invalid key, not inserted.
+        if (is_open(key)) {
+            return std::make_pair(emplace(value), true);
+        }
+        // If invalid we point to the subsequent range that collided, if valid begin is the start of the valid range
+        const auto &collision_begin = ranges_[key.begin].begin;
+        assert(ranges_[collision_begin].valid());
+        return std::make_pair(iterator(this, collision_begin), false);
+    }
+
+    template <typename SplitOp>
+    iterator split(const iterator whole_it, const index_type &index, [[maybe_unused]] const SplitOp &split_op) {
+        if (!whole_it->first.includes(index)) return whole_it;  // If we don't have a valid split point, just return the iterator
+
+        const auto &key = whole_it->first;
+        const auto small_key = make_small_range(key);
+        key_type lower_key(key.begin, index);
+        if (lower_key.empty() && SplitOp::keep_upper()) {
+            return whole_it;  // this is a noop we're keeping the upper half which is the same as whole_it;
+        }
+
+        if ((lower_key.empty() && !SplitOp::keep_upper()) || !(SplitOp::keep_lower() || SplitOp::keep_upper())) {
+            // This effectively an erase... so erase.
+            return erase(whole_it);
+        }
+
+        // Upper range cannot be empty (because the split point would be included...
+        const auto small_lower_key = make_small_range(lower_key);
+        const SmallRange small_upper_key{small_lower_key.end, small_key.end};
+        if (SplitOp::keep_upper()) {
+            // Note: create the upper section before the lower, as processing the lower may erase it
+            assert(!small_upper_key.empty());
+            const key_type upper_key{lower_key.end, key.end};
+            if (SplitOp::keep_lower()) {
+                construct_value(small_upper_key.begin, std::make_pair(upper_key, get_value(small_key.begin)->second));
+            } else {
+                // If we aren't keeping the lower, move instead of copy
+                construct_value(small_upper_key.begin, std::make_pair(upper_key, std::move(get_value(small_key.begin)->second)));
+            }
+            for (auto i = small_upper_key.begin; i < small_upper_key.end; ++i) {
+                ranges_[i] = small_upper_key;
+            }
+        } else {
+            // rewrite "end" to the next valid range (or end)
+            assert(SplitOp::keep_lower());
+            auto next = next_range(small_key.begin);
+            rerange(small_upper_key, SmallRange(next, small_lower_key.end));
+            // for any already invalid, we just rewrite the end.
+            rerange_end(small_upper_key.end, next, small_lower_key.end);
+        }
+        SmallIndex split_index;
+        if (SplitOp::keep_lower()) {
+            resize_value(small_key.begin, lower_key.end);
+            rerange_end(small_lower_key.begin, small_lower_key.end, small_lower_key.end);
+            split_index = small_lower_key.begin;
+        } else {
+            // Remove lower and rewrite empty space
+            assert(SplitOp::keep_upper());
+            destruct_value(small_key.begin);
+
+            // Rewrite prior empty space (if any)
+            auto prev = prev_range(small_key.begin);
+            SmallIndex limit = small_lower_key.end;
+            SmallIndex start = 0;
+            if (small_key.begin != 0) {
+                const auto &prev_start = ranges_[prev];
+                if (prev_start.valid()) {
+                    // If there is a previous used range, the empty space starts after it.
+                    start = prev_start.end;
+                } else {
+                    assert(prev == 0);  // prev_range only returns invalid ranges "off the front"
+                    start = prev;
+                }
+                // for the section *prior* to key begin only need to rewrite the "invalid" begin (i.e. next "in use" begin)
+                rerange_begin(start, small_lower_key.begin, limit);
+            }
+            // for the section being erased rewrite the invalid range reflecting the empty space
+            rerange(small_lower_key, SmallRange(limit, start));
+            split_index = small_lower_key.end;
+        }
+
+        return iterator(this, split_index);
+    }
+
+    // For the value.first range rewrite the range...
+    template <typename Value>
+    iterator overwrite_range(Value &&value) {
+        const auto &key = value.first;
+
+        // Small map only has a restricted range supported
+        assert(in_bounds(key));
+        if (key.end > get_limit()) {
+            return end();
+        }
+
+        const auto small_key = make_small_range(key);
+        clear_out_range(small_key, /* valid clear range */ true);
+        construct_value(small_key.begin, std::forward<Value>(value));
+        return iterator(this, small_key.begin);
+    }
+
+    // We don't need a hint...
+    template <typename Value>
+    iterator overwrite_range([[maybe_unused]] const iterator &hint, Value &&value) {
+        return overwrite_range(std::forward<Value>(value));
+    }
+
+    // For the range erase all contents within range, trimming any overlapping ranges
+    iterator erase_range(const key_type &range) {
+        // Small map only has a restricted range supported
+        assert(in_bounds(range));
+        if (range.end > get_limit() || range.empty()) {
+            return end();
+        }
+        const auto empty = clear_out_range(make_small_range(range), /* valid clear range */ false);
+        return iterator(this, empty.end);
+    }
+
+    template <typename Iterator>
+    iterator erase(const Iterator &first, const Iterator &last) {
+        assert(this == first.map_);
+        assert(this == last.map_);
+        auto first_pos = !first.at_end() ? first.pos_ : limit_;
+        auto last_pos = !last.at_end() ? last.pos_ : limit_;
+        assert(first_pos <= last_pos);
+        const SmallRange clear_me(first_pos, last_pos);
+        if (!clear_me.empty()) {
+            const SmallRange empty_range(find_empty_left(clear_me), last_pos);
+            clear_and_set_range(empty_range.begin, empty_range.end, make_invalid_range(empty_range));
+        }
+        return iterator(this, last_pos);
+    }
+
+    iterator lower_bound(const key_type &key) { return iterator(this, lower_bound_impl(this, key)); }
+    const_iterator lower_bound(const key_type &key) const { return const_iterator(this, lower_bound_impl(this, key)); }
+
+    iterator upper_bound(const key_type &key) { return iterator(this, upper_bound_impl(this, key)); }
+    const_iterator upper_bound(const key_type &key) const { return const_iterator(this, upper_bound_impl(this, key)); }
+
+    small_range_map(index_type limit = N) : size_(0), limit_(static_cast<SmallIndex>(limit)) {
+        assert(limit <= std::numeric_limits<SmallIndex>::max());
+        init_range();
+    }
+
+    // Only valid for empty maps
+    void set_limit(size_t limit) {
+        assert(size_ == 0);
+        assert(limit <= std::numeric_limits<SmallIndex>::max());
+        limit_ = static_cast<SmallIndex>(limit);
+        init_range();
+    }
+    inline index_type get_limit() const { return static_cast<index_type>(limit_); }
+
+  private:
+    inline bool in_bounds(index_type index) const { return index < get_limit(); }
+    inline bool in_bounds(const RangeKey &key) const { return key.begin < get_limit() && key.end <= get_limit(); }
+
+    inline SmallRange make_small_range(const RangeKey &key) const {
+        assert(in_bounds(key));
+        return SmallRange(static_cast<SmallIndex>(key.begin), static_cast<SmallIndex>(key.end));
+    }
+
+    inline SmallRange make_invalid_range(const SmallRange &key) const { return SmallRange(key.end, key.begin); }
+
+    bool is_open(const key_type &key) const {
+        // Remebering that invalid range.begin is the beginning the next used range.
+        const auto small_key = make_small_range(key);
+        const auto &range = ranges_[small_key.begin];
+        return range.invalid() && small_key.end <= range.begin;
+    }
+    // Only call this with a valid beginning index
+    iterator erase_impl(SmallIndex erase_index) {
+        assert(erase_index == ranges_[erase_index].begin);
+        auto &range = ranges_[erase_index];
+        destruct_value(erase_index);
+        // Need to update the ranges to accommodate the erasure
+        SmallIndex prev = 0;  // This is correct for the case erase_index is 0....
+        if (erase_index != 0) {
+            prev = prev_range(erase_index);
+            // This works if prev is valid or invalid, because the invalid end will be either 0 (and correct) or the end of the
+            // prior valid range and the valid end will be the end of the previous range (and thus correct)
+            prev = ranges_[prev].end;
+        }
+        auto next = next_range(erase_index);
+        // We have to be careful of next == limit_...
+        if (next < limit_) {
+            next = ranges_[next].begin;
+        }
+        // Rewrite both adjoining and newly empty entries
+        SmallRange infill(next, prev);
+        for (auto i = prev; i < next; ++i) {
+            ranges_[i] = infill;
+        }
+        return iterator(this, next);
+    }
+    // This implements the "range lower bound logic" directly on the ranges
+    template <typename Map>
+    static SmallIndex lower_bound_impl(Map *const that, const key_type &key) {
+        if (!that->in_bounds(key.begin)) return that->limit_;
+        // If range is invalid, then begin points to the next valid (or end) with must be the lower bound
+        // If range is valid, the begin points to a the lowest range that interects key
+        const auto lb = that->ranges_[static_cast<SmallIndex>(key.begin)].begin;
+        return lb;
+    }
+
+    template <typename Map>
+    static SmallIndex upper_bound_impl(Map *that, const key_type &key) {
+        const auto limit = that->get_limit();
+        if (key.end >= limit) return that->limit_;  //  at end
+        const auto &end_range = that->ranges_[key.end];
+        // If range is invalid, then begin points to the next valid (or end) with must be the upper bound (key < range because
+        auto ub = end_range.begin;
+        // If range is valid, the begin points to a range that may interects key, which is be upper iff range.begin == key.end
+        if (end_range.valid() && (key.end > end_range.begin)) {
+            // the ub candidate *intersects* the key, so we have to go to the next range.
+            ub = that->next_range(end_range.begin);
+        }
+        return ub;
+    }
+
+    // This is and inclusive "inuse", the entry itself
+    SmallIndex find_inuse_right(const SmallRange &range) const {
+        if (range.end >= limit_) return limit_;
+        // if range is valid, begin is the first use (== range.end), else it's the first used after the invalid range
+        return ranges_[range.end].begin;
+    }
+    // This is an exclusive "inuse", the end of the previous range
+    SmallIndex find_inuse_left(const SmallRange &range) const {
+        if (range.begin == 0) return 0;
+        // if range is valid, end is the end of the first use (== range.begin), else it's the end of the in use range before the
+        // invalid range
+        return ranges_[range.begin - 1].end;
+    }
+    SmallRange find_empty(const SmallRange &range) const { return SmallRange(find_inuse_left(range), find_inuse_right(range)); }
+
+    // Clear out the given range, trimming as needed.  The clear_range can be set as valid or invalid
+    SmallRange clear_out_range(const SmallRange &clear_range, bool valid_clear_range) {
+        // By copy to avoid reranging side affect
+        auto first_range = ranges_[clear_range.begin];
+
+        // fast path for matching ranges...
+        if (first_range == clear_range) {
+            // clobber the existing value
+            destruct_value(clear_range.begin);
+            if (valid_clear_range) {
+                return clear_range;  // This is the overwrite fastpath for matching range
+            } else {
+                const auto empty_range = find_empty(clear_range);
+                rerange(empty_range, make_invalid_range(empty_range));
+                return empty_range;
+            }
+        }
+
+        SmallRange empty_left(clear_range.begin, clear_range.begin);
+        SmallRange empty_right(clear_range.end, clear_range.end);
+
+        // The clearout is entirely within a single extant range, trim and set.
+        if (first_range.valid() && first_range.includes(clear_range)) {
+            // Shuffle around first_range, three cases...
+            if (first_range.begin < clear_range.begin) {
+                // We have a lower trimmed area to preserve.
+                resize_value(first_range.begin, clear_range.begin);
+                rerange_end(first_range.begin, clear_range.begin, clear_range.begin);
+                if (first_range.end > clear_range.end) {
+                    // And an upper portion of first that needs to copy from the lower
+                    construct_value(clear_range.end, std::make_pair(key_type(clear_range.end, first_range.end),
+                                                                    get_value(first_range.begin)->second));
+                    rerange_begin(clear_range.end, first_range.end, clear_range.end);
+                } else {
+                    assert(first_range.end == clear_range.end);
+                    empty_right.end = find_inuse_right(clear_range);
+                }
+            } else {
+                assert(first_range.end > clear_range.end);
+                assert(first_range.begin == clear_range.begin);
+                // Only an upper trimmed area to preserve, so move the first range value to the upper trim zone.
+                resize_value_right(first_range, clear_range.end);
+                rerange_begin(clear_range.end, first_range.end, clear_range.end);
+                empty_left.begin = find_inuse_left(clear_range);
+            }
+        } else {
+            if (first_range.valid()) {
+                if (first_range.begin < clear_range.begin) {
+                    // Trim left.
+                    assert(first_range.end < clear_range.end);  // we handled the "includes" case above
+                    resize_value(first_range.begin, clear_range.begin);
+                    rerange_end(first_range.begin, clear_range.begin, clear_range.begin);
+                }
+            } else {
+                empty_left.begin = find_inuse_left(clear_range);
+            }
+
+            // rewrite excluded portion of final range
+            if (clear_range.end < limit_) {
+                const auto &last_range = ranges_[clear_range.end];
+                if (last_range.valid()) {
+                    // for a valid adjoining range we don't have to change empty_right, but we may have to trim
+                    if (last_range.begin < clear_range.end) {
+                        resize_value_right(last_range, clear_range.end);
+                        rerange_begin(clear_range.end, last_range.end, clear_range.end);
+                    }
+                } else {
+                    // Note: invalid ranges "begin" and the next inuse range (or end)
+                    empty_right.end = last_range.begin;
+                }
+            }
+        }
+
+        const SmallRange empty(empty_left.begin, empty_right.end);
+        // Clear out the contents
+        for (auto i = empty.begin; i < empty.end; ++i) {
+            const auto &range = ranges_[i];
+            if (range.begin == i) {
+                assert(range.valid());
+                // Clean up the backing store
+                destruct_value(i);
+            }
+        }
+
+        // Rewrite the ranges
+        if (valid_clear_range) {
+            rerange_begin(empty_left.begin, empty_left.end, clear_range.begin);
+            rerange(clear_range, clear_range);
+            rerange_end(empty_right.begin, empty_right.end, clear_range.end);
+        } else {
+            rerange(empty, make_invalid_range(empty));
+        }
+        assert(empty.end == limit_ || ranges_[empty.end].valid());
+        assert(empty.begin == 0 || ranges_[empty.begin - 1].valid());
+        return empty;
+    }
+
+    void init_range() {
+        const SmallRange init_val(limit_, 0);
+        for (SmallIndex i = 0; i < limit_; ++i) {
+            ranges_[i] = init_val;
+            in_use_[i] = false;
+        }
+    }
+    value_type *get_value(SmallIndex index) {
+        assert(index < limit_);  // Must be inbounds
+        return reinterpret_cast<value_type *>(&(backing_store_[index]));
+    }
+    const value_type *get_value(SmallIndex index) const {
+        assert(index < limit_);                 // Must be inbounds
+        assert(index == ranges_[index].begin);  // Must be the record at begin
+        return reinterpret_cast<const value_type *>(&(backing_store_[index]));
+    }
+
+    template <typename Value>
+    void construct_value(SmallIndex index, Value &&value) {
+        assert(!in_use_[index]);
+        new (get_value(index)) value_type(std::forward<Value>(value));
+        in_use_[index] = true;
+        ++size_;
+    }
+
+    void destruct_value(SmallIndex index) {
+        // there are times when the range and destruct logic clash... allow for double attempted deletes
+        if (in_use_[index]) {
+            assert(size_ > 0);
+            --size_;
+            get_value(index)->~value_type();
+            in_use_[index] = false;
+        }
+    }
+
+    // No need to move around the value, when just the key is moving
+    // Use the destructor/placement new just in case of a complex key with range's semantics
+    // Note: Call resize before rewriting ranges_
+    void resize_value(SmallIndex current_begin, index_type new_end) {
+        // Destroy and rewrite the key in place
+        assert(ranges_[current_begin].end != new_end);
+        key_type new_key(current_begin, new_end);
+        key_type *key = const_cast<key_type *>(&get_value(current_begin)->first);
+        key->~key_type();
+        new (key) key_type(new_key);
+    }
+
+    inline void rerange_end(SmallIndex old_begin, SmallIndex new_end, SmallIndex new_end_value) {
+        for (auto i = old_begin; i < new_end; ++i) {
+            ranges_[i].end = new_end_value;
+        }
+    }
+    inline void rerange_begin(SmallIndex new_begin, SmallIndex old_end, SmallIndex new_begin_value) {
+        for (auto i = new_begin; i < old_end; ++i) {
+            ranges_[i].begin = new_begin_value;
+        }
+    }
+    inline void rerange(const SmallRange &range, const SmallRange &range_value) {
+        for (auto i = range.begin; i < range.end; ++i) {
+            ranges_[i] = range_value;
+        }
+    }
+
+    // for resize right need both begin and end...
+    void resize_value_right(const SmallRange &current_range, index_type new_begin) {
+        // Use move semantics for (potentially) heavyweight mapped_type's
+        assert(current_range.begin != new_begin);
+        // Move second from it's current location and update the first at the same time
+        construct_value(static_cast<SmallIndex>(new_begin),
+                        std::make_pair(key_type(new_begin, current_range.end), std::move(get_value(current_range.begin)->second)));
+        destruct_value(current_range.begin);
+    }
+
+    // Now we can walk a range and rewrite it cleaning up any live contents
+    void clear_and_set_range(SmallIndex rewrite_begin, SmallIndex rewrite_end, const SmallRange &new_range) {
+        for (auto i = rewrite_begin; i < rewrite_end; ++i) {
+            auto &range = ranges_[i];
+            if (i == range.begin) {
+                destruct_value(i);
+            }
+            range = new_range;
+        }
+    }
+
+    SmallIndex next_range(SmallIndex current) const {
+        SmallIndex next = ranges_[current].end;
+        // If the next range is invalid, skip to the next range, which *must* be (or be end)
+        if ((next < limit_) && ranges_[next].invalid()) {
+            // For invalid ranges, begin is the beginning of the next range
+            next = ranges_[next].begin;
+            assert(next == limit_ || ranges_[next].valid());
+        }
+        return next;
+    }
+
+    SmallIndex prev_range(SmallIndex current) const {
+        if (current == 0) {
+            return 0;
+        }
+
+        auto prev = current - 1;
+        if (ranges_[prev].valid()) {
+            // For valid ranges, the range denoted by begin (as that's where the backing store keeps values
+            prev = ranges_[prev].begin;
+        } else if (prev != 0) {
+            // Invalid but not off the front, we can recur (only once) from the end of the prev range to get the answer
+            // For invalid ranges this is the end of the previous range
+            prev = prev_range(ranges_[prev].end);
+        }
+        return prev;
+    }
+
+    friend iterator;
+    friend const_iterator;
+    // Stores range boundaries only
+    //     open ranges, stored as inverted, invalid range (begining of next, end of prev]
+    //     inuse(begin, end) for all entries  on (begin, end]
+    // Used for placement new of T for each range begin.
+    struct alignas(alignof(value_type)) BackingStore {
+        uint8_t data[sizeof(value_type)];
+    };
+
+    SmallIndex size_;
+    SmallIndex limit_;
+    std::array<SmallRange, N> ranges_;
+    std::array<BackingStore, N> backing_store_;
+    std::array<bool, N> in_use_;
+};
+
+// Forward index iterator, tracking an index value and the appropos lower bound
+// returns an index_type, lower_bound pair.  Supports ++,  offset, and seek affecting the index,
+// lower bound updates as needed. As the index may specify a range for which no entry exist, dereferenced
+// iterator includes an "valid" field, true IFF the lower_bound is not end() and contains [index, index +1)
+//
+// Must be explicitly invalidated when the underlying map is changed.
+template <typename Map>
+class cached_lower_bound_impl {
+    using plain_map_type = typename std::remove_const<Map>::type;  // Allow instatiation with const or non-const Map
+  public:
+    using iterator = const_correct_iterator<Map>;
+    using key_type = typename plain_map_type::key_type;
+    using mapped_type = typename plain_map_type::mapped_type;
+    // Both sides of the return pair are const'd because we're returning references/pointers to the *internal* state
+    // and we don't want and caller altering internal state.
+    using index_type = typename Map::index_type;
+    struct value_type {
+        const index_type &index;
+        const iterator &lower_bound;
+        const bool &valid;
+        value_type(const index_type &index_, const iterator &lower_bound_, bool &valid_)
+            : index(index_), lower_bound(lower_bound_), valid(valid_) {}
+    };
+
+  private:
+    Map *const map_;
+    const iterator end_;
+    value_type pos_;
+
+    index_type index_;
+    iterator lower_bound_;
+    bool valid_;
+
+    bool is_valid() const { return includes(index_); }
+
+    // Allow reuse of a type with const semantics
+    void set_value(const index_type &index, const iterator &it) {
+        assert(it == lower_bound(index));
+        index_ = index;
+        lower_bound_ = it;
+        valid_ = is_valid();
+    }
+
+    void update(const index_type &index) {
+        assert(lower_bound_ == lower_bound(index));
+        index_ = index;
+        valid_ = is_valid();
+    }
+
+    inline iterator lower_bound(const index_type &index) { return map_->lower_bound(key_type(index, index + 1)); }
+    inline bool at_end(const iterator &it) const { return it == end_; }
+
+    bool is_lower_than(const index_type &index, const iterator &it) { return at_end(it) || (index < it->first.end); }
+
+  public:
+    // The cached lower bound knows the parent map, and thus can tell us this...
+    inline bool at_end() const { return at_end(lower_bound_); }
+    // includes(index) is a convenience function to test if the index would be in the currently cached lower bound
+    bool includes(const index_type &index) const { return !at_end() && lower_bound_->first.includes(index); }
+
+    // The return is const because we are sharing the internal state directly.
+    const value_type &operator*() const { return pos_; }
+    const value_type *operator->() const { return &pos_; }
+
+    // Advance the cached location by 1
+    cached_lower_bound_impl &operator++() {
+        const index_type next = index_ + 1;
+        if (is_lower_than(next, lower_bound_)) {
+            update(next);
+        } else {
+            // if we're past pos_->second, next *must* be the new lower bound.
+            // NOTE: that next can't be past end, so lower_bound_ isn't end.
+            auto next_it = lower_bound_;
+            ++next_it;
+            set_value(next, next_it);
+
+            // However we *must* not be past next.
+            assert(is_lower_than(next, next_it));
+        }
+
+        return *this;
+    }
+
+    // seek(index) updates lower_bound for index, updating lower_bound_ as needed.
+    cached_lower_bound_impl &seek(const index_type &seek_to) {
+        // Optimize seeking to  forward
+        if (index_ == seek_to) {
+            // seek to self is a NOOP.  To reset lower bound after a map change, use invalidate
+        } else if (index_ < seek_to) {
+            // See if the current or next ranges are the appropriate lower_bound... should be a common use case
+            if (is_lower_than(seek_to, lower_bound_)) {
+                // lower_bound_ is still the correct lower bound
+                update(seek_to);
+            } else {
+                // Look to see if the next range is the new lower_bound (and we aren't at end)
+                auto next_it = lower_bound_;
+                ++next_it;
+                if (is_lower_than(seek_to, next_it)) {
+                    // next_it is the correct new lower bound
+                    set_value(seek_to, next_it);
+                } else {
+                    // We don't know where we are...  and we aren't going to walk the tree looking for seek_to.
+                    set_value(seek_to, lower_bound(seek_to));
+                }
+            }
+        } else {
+            // General case... this is += so we're not implmenting optimized negative offset logic
+            set_value(seek_to, lower_bound(seek_to));
+        }
+        return *this;
+    }
+
+    // Advance the cached location by offset.
+    cached_lower_bound_impl &offset(const index_type &offset) {
+        const index_type next = index_ + offset;
+        return seek(next);
+    }
+
+    // invalidate() resets the the lower_bound_ cache, needed after insert/erase/overwrite/split operations
+    // Pass index by value in case we are invalidating to index_ and set_value does a modify-in-place on index_
+    cached_lower_bound_impl &invalidate(index_type index) {
+        set_value(index, lower_bound(index));
+        return *this;
+    }
+
+    // For times when the application knows what it's done to the underlying map... (with assert in set_value)
+    cached_lower_bound_impl &invalidate(const iterator &hint, index_type index) {
+        set_value(index, hint);
+        return *this;
+    }
+
+    cached_lower_bound_impl &invalidate() { return invalidate(index_); }
+
+    // Allow a hint for a *valid* lower bound for current index
+    // TODO: if the fail-over becomes a hot-spot, the hint logic could be far more clever (looking at previous/next...)
+    cached_lower_bound_impl &invalidate(const iterator &hint) {
+        if ((hint != end_) && hint->first.includes(index_)) {
+            auto index = index_;  // by copy set modifies in place
+            set_value(index, hint);
+        } else {
+            invalidate();
+        }
+        return *this;
+    }
+
+    // The offset in index type to the next change (the end of the current range, or the transition from invalid to
+    // valid.  If invalid and at_end, returns index_type(0)
+    index_type distance_to_edge() {
+        if (valid_) {
+            // Distance to edge of
+            return lower_bound_->first.end - index_;
+        } else if (at_end()) {
+            return index_type(0);
+        } else {
+            return lower_bound_->first.begin - index_;
+        }
+    }
+
+    Map &map() { return *map_; }
+    const Map &map() const { return *map_; }
+
+    // Default constructed object reports valid (correctly) as false, but otherwise will fail (assert) under nearly any use.
+    cached_lower_bound_impl()
+        : map_(nullptr), end_(), pos_(index_, lower_bound_, valid_), index_(0), lower_bound_(), valid_(false) {}
+    cached_lower_bound_impl(Map &map, const index_type &index)
+        : map_(&map),
+          end_(map.end()),
+          pos_(index_, lower_bound_, valid_),
+          index_(index),
+          lower_bound_(lower_bound(index)),
+          valid_(is_valid()) {}
+};
+
+template <typename CachedLowerBound, typename MappedType = typename CachedLowerBound::mapped_type>
+const MappedType &evaluate(const CachedLowerBound &clb, const MappedType &default_value) {
+    if (clb->valid) {
+        return clb->lower_bound->second;
+    }
+    return default_value;
+}
+
+// Split a range into pieces bound by the intersection of the iterator's range and the supplied range
+template <typename Iterator, typename Map, typename Range>
+Iterator split(Iterator in, Map &map, const Range &range) {
+    assert(in != map.end());  // Not designed for use with invalid iterators...
+    const auto in_range = in->first;
+    const auto split_range = in_range & range;
+
+    if (split_range.empty()) return map.end();
+
+    auto pos = in;
+    if (split_range.begin != in_range.begin) {
+        pos = map.split(pos, split_range.begin, split_op_keep_both());
+        ++pos;
+    }
+    if (split_range.end != in_range.end) {
+        pos = map.split(pos, split_range.end, split_op_keep_both());
+    }
+    return pos;
+}
+
+// Apply an operation over a range map, infilling where content is absent, updating where content is present.
+// The passed pos must *either* be strictly less than range or *is* lower_bound (which may be end)
+// Trims to range boundaries.
+// infill op doesn't have to alter map, but mustn't invalidate iterators passed to it. (i.e. no erasure)
+// infill data (default mapped value or other initial value) is contained with ops.
+// update allows existing ranges to be updated (merged, whatever) based on data contained in ops.  All iterators
+// passed to update are already trimmed to fit within range.
+template <typename RangeMap, typename InfillUpdateOps, typename Iterator = typename RangeMap::iterator>
+Iterator infill_update_range(RangeMap &map, Iterator pos, const typename RangeMap::key_type &range, const InfillUpdateOps &ops) {
+    using KeyType = typename RangeMap::key_type;
+    using IndexType = typename RangeMap::index_type;
+
+    const auto end = map.end();
+    assert((pos == end) || (pos == map.lower_bound(range)) || pos->first.strictly_less(range));
+
+    if (range.empty()) return pos;
+    if (pos == end) {
+        // Only pass pos == end for range tail after last entry
+        assert(end == map.lower_bound(range));
+    } else if (pos->first.strictly_less(range)) {
+        // pos isn't lower_bound for range (it's less than range), however, if range is monotonically increasing it's likely
+        // the next entry in the map will be the lower bound.
+
+        // If the new (pos + 1) *isn't* stricly_less and pos is,
+        // (pos + 1) must be the lower_bound, otherwise we have to look for it O(log n)
+        ++pos;
+        if ((pos != end) && pos->first.strictly_less(range)) {
+            pos = map.lower_bound(range);
+        }
+        assert(pos == map.lower_bound(range));
+    }
+
+    if ((pos != end) && (range.begin > pos->first.begin)) {
+        // lower bound starts before the range, trim and advance
+        pos = map.split(pos, range.begin, split_op_keep_both());
+        ++pos;
+    }
+
+    IndexType current_begin = range.begin;
+    while ((pos != end) && (current_begin < range.end)) {
+        // The current_begin is either pointing to the next existing value to update or the beginning of a gap to infill
+        assert(pos->first.begin >= current_begin);
+
+        if (current_begin < pos->first.begin) {
+            // We have a gap to infill (we supply pos for ("insert in front of" calls)
+            ops.infill(map, pos, KeyType(current_begin, std::min(range.end, pos->first.begin)));
+            // Advance current begin, but *not* pos as it's the next valid value. (infill shall not invalidate pos)
+            current_begin = pos->first.begin;
+        } else {
+            // We need to run the update operation on the valid portion of the current value
+            if (pos->first.end > range.end) {
+                // If this entry overlaps end-of-range we need to trim it to the range
+                pos = map.split(pos, range.end, split_op_keep_both());
+            }
+
+            // We have a valid fully contained range, merge with it
+            ops.update(pos);
+
+            // Advance the current location and map entry
+            current_begin = pos->first.end;
+            ++pos;
+        }
+    }
+
+    // Fill to the end as needed
+    if (current_begin < range.end) {
+        ops.infill(map, pos, KeyType(current_begin, range.end));
+    }
+
+    return pos;
+}
+
+template <typename RangeMap, typename InfillUpdateOps>
+void infill_update_range(RangeMap &map, const typename RangeMap::key_type &range, const InfillUpdateOps &ops) {
+    if (range.empty()) return;
+    auto pos = map.lower_bound(range);
+    infill_update_range(map, pos, range, ops);
+}
+
+template <typename RangeMap, typename RangeGen, typename InfillUpdateOps>
+void infill_update_rangegen(RangeMap &map, RangeGen &range_gen, const InfillUpdateOps &ops) {
+    auto pos = map.lower_bound(*range_gen);
+    for (; range_gen->non_empty(); ++range_gen) {
+        pos = infill_update_range(map, pos, *range_gen, ops);
+    }
+}
+
+// Parallel iterator
+// Traverse to range maps over the the same range, but without assumptions of aligned ranges.
+// ++ increments to the next point where on of the two maps changes range, giving a range over which the two
+// maps do not transition ranges
+template <typename MapA, typename MapB = MapA, typename KeyType = typename MapA::key_type>
+class parallel_iterator {
+  public:
+    using key_type = KeyType;
+    using index_type = typename key_type::index_type;
+
+    // The traits keep the iterator/const_interator consistent with the constness of the map.
+    using map_type_A = MapA;
+    using plain_map_type_A = typename std::remove_const<MapA>::type;  // Allow instatiation with const or non-const Map
+    using key_type_A = typename plain_map_type_A::key_type;
+    using index_type_A = typename plain_map_type_A::index_type;
+    using iterator_A = const_correct_iterator<map_type_A>;
+    using lower_bound_A = cached_lower_bound_impl<map_type_A>;
+
+    using map_type_B = MapB;
+    using plain_map_type_B = typename std::remove_const<MapB>::type;
+    using key_type_B = typename plain_map_type_B::key_type;
+    using index_type_B = typename plain_map_type_B::index_type;
+    using iterator_B = const_correct_iterator<map_type_B>;
+    using lower_bound_B = cached_lower_bound_impl<map_type_B>;
+
+    // This is the value we'll always be returning, but the referenced object will be updated by the operations
+    struct value_type {
+        const key_type &range;
+        const lower_bound_A &pos_A;
+        const lower_bound_B &pos_B;
+        value_type(const key_type &range_, const lower_bound_A &pos_A_, const lower_bound_B &pos_B_)
+            : range(range_), pos_A(pos_A_), pos_B(pos_B_) {}
+    };
+
+  private:
+    lower_bound_A pos_A_;
+    lower_bound_B pos_B_;
+    key_type range_;
+    value_type pos_;
+    index_type compute_delta() {
+        auto delta_A = pos_A_.distance_to_edge();
+        auto delta_B = pos_B_.distance_to_edge();
+        index_type delta_min;
+
+        // If either A or B are at end, there distance is *0*, so shouldn't be considered in the "distance to edge"
+        if (delta_A == 0) {  // lower A is at end
+            delta_min = static_cast<index_type>(delta_B);
+        } else if (delta_B == 0) {  // lower B is at end
+            delta_min = static_cast<index_type>(delta_A);
+        } else {
+            // Neither are at end, use the nearest edge, s.t. over this range A and B are both constant
+            delta_min = std::min(static_cast<index_type>(delta_A), static_cast<index_type>(delta_B));
+        }
+        return delta_min;
+    }
+
+  public:
+    // Default constructed object will report range empty (for end checks), but otherwise is unsafe to use
+    parallel_iterator() : pos_A_(), pos_B_(), range_(), pos_(range_, pos_A_, pos_B_) {}
+    parallel_iterator(map_type_A &map_A, map_type_B &map_B, index_type index)
+        : pos_A_(map_A, static_cast<index_type_A>(index)),
+          pos_B_(map_B, static_cast<index_type_B>(index)),
+          range_(index, index + compute_delta()),
+          pos_(range_, pos_A_, pos_B_) {}
+
+    // Advance to the next spot one of the two maps changes
+    parallel_iterator &operator++() {
+        const auto start = range_.end;         // we computed this the last time we set range
+        const auto delta = range_.distance();  // we computed this the last time we set range
+        assert(delta != 0);                    // Trying to increment past end
+
+        pos_A_.offset(static_cast<index_type_A>(delta));
+        pos_B_.offset(static_cast<index_type_B>(delta));
+
+        range_ = key_type(start, start + compute_delta());  // find the next boundary (must be after offset)
+        assert(pos_A_->index == start);
+        assert(pos_B_->index == start);
+
+        return *this;
+    }
+
+    // Seeks to a specific index in both maps reseting range.  Cannot guarantee range.begin is on edge boundary,
+    /// but range.end will be.  Lower bound objects assumed to invalidate their cached lower bounds on seek.
+    parallel_iterator &seek(const index_type &index) {
+        pos_A_.seek(static_cast<index_type_A>(index));
+        pos_B_.seek(static_cast<index_type_B>(index));
+        range_ = key_type(index, index + compute_delta());
+        assert(pos_A_->index == index);
+        assert(pos_A_->index == pos_B_->index);
+        return *this;
+    }
+
+    // Invalidates the lower_bound caches, reseting range.  Cannot guarantee range.begin is on edge boundary,
+    // but range.end will be.
+    parallel_iterator &invalidate() {
+        const index_type start = range_.begin;
+        seek(start);
+        return *this;
+    }
+
+    parallel_iterator &invalidate_A() {
+        const index_type index = range_.begin;
+        pos_A_.invalidate(static_cast<index_type_A>(index));
+        range_ = key_type(index, index + compute_delta());
+        return *this;
+    }
+
+    parallel_iterator &invalidate_A(const iterator_A &hint) {
+        const index_type index = range_.begin;
+        pos_A_.invalidate(hint, static_cast<index_type_A>(index));
+        range_ = key_type(index, index + compute_delta());
+        return *this;
+    }
+
+    parallel_iterator &invalidate_B() {
+        const index_type index = range_.begin;
+        pos_B_.invalidate(static_cast<index_type_B>(index));
+        range_ = key_type(index, index + compute_delta());
+        return *this;
+    }
+
+    parallel_iterator &invalidate_B(const iterator_B &hint) {
+        const index_type index = range_.begin;
+        pos_B_.invalidate(hint, static_cast<index_type_B>(index));
+        range_ = key_type(index, index + compute_delta());
+        return *this;
+    }
+
+    parallel_iterator &trim_A() {
+        if (pos_A_->valid && (range_ != pos_A_->lower_bound->first)) {
+            split(pos_A_->lower_bound, pos_A_.map(), range_);
+            invalidate_A();
+        }
+        return *this;
+    }
+
+    // The return is const because we are sharing the internal state directly.
+    const value_type &operator*() const { return pos_; }
+    const value_type *operator->() const { return &pos_; }
+};
+
+template <typename DstRangeMap, typename SrcRangeMap, typename Updater,
+          typename SourceIterator = typename SrcRangeMap::const_iterator>
+bool splice(DstRangeMap &to, const SrcRangeMap &from, SourceIterator begin, SourceIterator end, const Updater &updater) {
+    if (from.empty() || (begin == end) || (begin == from.cend())) return false;  // nothing to merge.
+
+    using ParallelIterator = parallel_iterator<DstRangeMap, const SrcRangeMap>;
+    using Key = typename SrcRangeMap::key_type;
+    using CachedLowerBound = cached_lower_bound_impl<DstRangeMap>;
+    using ConstCachedLowerBound = cached_lower_bound_impl<const SrcRangeMap>;
+    ParallelIterator par_it(to, from, begin->first.begin);
+    bool updated = false;
+    while (par_it->range.non_empty() && par_it->pos_B->lower_bound != end) {
+        const Key &range = par_it->range;
+        const CachedLowerBound &to_lb = par_it->pos_A;
+        const ConstCachedLowerBound &from_lb = par_it->pos_B;
+        if (from_lb->valid) {
+            auto read_it = from_lb->lower_bound;
+            auto write_it = to_lb->lower_bound;
+            // Because of how the parallel iterator walk, "to" is valid over the whole range or it isn't (ranges don't span
+            // transitions between map entries or between valid and invalid ranges)
+            if (to_lb->valid) {
+                if (write_it->first == range) {
+                    // if the source and destination ranges match we can overwrite everything
+                    updated |= updater.update(write_it->second, read_it->second);
+                } else {
+                    // otherwise we need to split the destination range.
+                    auto value_to_update = write_it->second;  // intentional copy
+                    updated |= updater.update(value_to_update, read_it->second);
+                    auto intersected_range = write_it->first & range;
+                    to.overwrite_range(to_lb->lower_bound, std::make_pair(intersected_range, value_to_update));
+                    par_it.invalidate_A();  // we've changed map 'to' behind to_lb's back... let it know.
+                }
+            } else {
+                // Insert into the gap.
+                auto opt = updater.insert(read_it->second);
+                if (opt) {
+                    to.insert(write_it, std::make_pair(range, std::move(*opt)));
+                    updated = true;
+                    par_it.invalidate_A();  // we've changed map 'to' behind to_lb's back... let it know.
+                }
+            }
+        }
+        ++par_it;  // next range over which both 'to' and 'from' stay constant
+    }
+    return updated;
+}
+// And short hand for "from begin to end"
+template <typename DstRangeMap, typename SrcRangeMap, typename Updater>
+bool splice(DstRangeMap &to, const SrcRangeMap &from, const Updater &updater) {
+    return splice(to, from, from.cbegin(), from.cend(), updater);
+}
+
+template <typename T>
+struct update_prefer_source {
+    bool update(T &dst, const T &src) const {
+        if (dst != src) {
+            dst = src;
+            return true;
+        }
+        return false;
+    }
+
+    std::optional<T> insert(const T &src) const { return std::optional<T>(std::in_place, src); }
+};
+
+template <typename T>
+struct update_prefer_dest {
+    bool update([[maybe_unused]] T &dst, [[maybe_unused]] const T &src) const { return false; }
+
+    std::optional<T> insert(const T &src) const { return std::optional<T>(std::in_place, src); }
+};
+
+template <typename RangeMap, typename SourceIterator = typename RangeMap::const_iterator>
+bool splice(RangeMap &to, const RangeMap &from, value_precedence arbiter, [[maybe_unused]] SourceIterator begin,
+            [[maybe_unused]] SourceIterator end) {
+    if (arbiter == value_precedence::prefer_source) {
+        return splice(to, from, from.cbegin(), from.cend(), update_prefer_source<typename RangeMap::mapped_type>());
+    } else {
+        return splice(to, from, from.cbegin(), from.cend(), update_prefer_dest<typename RangeMap::mapped_type>());
+    }
+}
+
+// And short hand for "from begin to end"
+template <typename RangeMap>
+bool splice(RangeMap &to, const RangeMap &from, value_precedence arbiter) {
+    return splice(to, from, arbiter, from.cbegin(), from.cend());
+}
+
+template <typename Map, typename Range = typename Map::key_type, typename MapValue = typename Map::mapped_type>
+bool update_range_value(Map &map, const Range &range, MapValue &&value, value_precedence precedence) {
+    using CachedLowerBound = typename vku::sparse::cached_lower_bound_impl<Map>;
+    CachedLowerBound pos(map, range.begin);
+
+    bool updated = false;
+    while (range.includes(pos->index)) {
+        if (!pos->valid) {
+            if (precedence == value_precedence::prefer_source) {
+                // We can convert this into and overwrite...
+                map.overwrite_range(pos->lower_bound, std::make_pair(range, std::forward<MapValue>(value)));
+                return true;
+            }
+            // Fill in the leading space (or in the case of pos at end the trailing space
+            const auto start = pos->index;
+            auto it = pos->lower_bound;
+            const auto limit = (it != map.end()) ? std::min(it->first.begin, range.end) : range.end;
+            map.insert(it, std::make_pair(Range(start, limit), value));
+            // We inserted before pos->lower_bound, so pos->lower_bound isn't invalid, but the associated index *is* and seek
+            // will fix this (and move the state to valid)
+            pos.seek(limit);
+            updated = true;
+        }
+        // Note that after the "fill" operation pos may have become valid so we check again
+        if (pos->valid) {
+            if ((precedence == value_precedence::prefer_source) && (pos->lower_bound->second != value)) {
+                // We've found a place where we're changing the value, at this point might as well simply over write the range
+                // and be done with it. (save on later merge operations....)
+                pos.seek(range.begin);
+                map.overwrite_range(pos->lower_bound, std::make_pair(range, std::forward<MapValue>(value)));
+                return true;
+
+            } else {
+                // "prefer_dest" means don't overwrite existing values, so we'll skip this interval.
+                // Point just past the end of this section,  if it's within the given range, it will get filled next iteration
+                // ++pos could move us past the end of range (which would exit the loop) so we don't use it.
+                pos.seek(pos->lower_bound->first.end);
+            }
+        }
+    }
+    return updated;
+}
+
+//  combines directly adjacent ranges with equal RangeMap::mapped_type .
+template <typename RangeMap>
+void consolidate(RangeMap &map) {
+    using Value = typename RangeMap::value_type;
+    using Key = typename RangeMap::key_type;
+    using It = typename RangeMap::iterator;
+
+    It current = map.begin();
+    const It map_end = map.end();
+
+    // To be included in a merge range there must be no gap in the Key space, and the mapped_type values must match
+    auto can_merge = [](const It &last, const It &cur) {
+        return cur->first.begin == last->first.end && cur->second == last->second;
+    };
+
+    while (current != map_end) {
+        // Establish a trival merge range at the current location, advancing current. Merge range is inclusive of merge_last
+        const It merge_first = current;
+        It merge_last = current;
+        ++current;
+
+        // Expand the merge range as much as possible
+        while (current != map_end && can_merge(merge_last, current)) {
+            merge_last = current;
+            ++current;
+        }
+
+        // Current isn't in the active merge range. If there is a non-trivial merge range, we resolve it here.
+        if (merge_first != merge_last) {
+            // IFF there is more than one range in (merge_first, merge_last)  <- again noting the *inclusive* last
+            // Create a new Val spanning (first, last), substitute it for the multiple entries.
+            Value merged_value = std::make_pair(Key(merge_first->first.begin, merge_last->first.end), merge_last->second);
+            // Note that current points to merge_last + 1, and is valid even if at map_end for these operations
+            map.erase(merge_first, current);
+            map.insert(current, std::move(merged_value));
+        }
+    }
+}
+
+// Returns the intersection of the ranges [x, x + x_size) and [y, y + y_size)
+static inline range<int64_t> GetRangeIntersection(int64_t x, uint64_t x_size, int64_t y, uint64_t y_size) {
+    int64_t intersection_min = std::max(x, y);
+    int64_t intersection_max = std::min(x + static_cast<int64_t>(x_size), y + static_cast<int64_t>(y_size));
+
+    return {intersection_min, intersection_max};
+}
+
+}  // namespace sparse
+}  // namespace vku
diff --git a/scripts/gn/stub.cpp b/scripts/gn/stub.cpp
index a9c729d..9cac331 100644
--- a/scripts/gn/stub.cpp
+++ b/scripts/gn/stub.cpp
@@ -11,7 +11,9 @@
 #include <vulkan/utility/vk_dispatch_table.h>
 #include <vulkan/utility/vk_concurrent_unordered_map.hpp>
 #include <vulkan/utility/vk_format_utils.h>
-#include <vulkan/utility/vk_struct_helper.hpp>
 #include <vulkan/utility/vk_safe_struct.hpp>
 #include <vulkan/utility/vk_safe_struct_utils.hpp>
+#include <vulkan/utility/vk_small_containers.hpp>
+#include <vulkan/utility/vk_sparse_range_map.hpp>
+#include <vulkan/utility/vk_struct_helper.hpp>
 #include <vulkan/vk_enum_string_helper.h>
diff --git a/tests/CMakeLists.txt b/tests/CMakeLists.txt
index 12b40df..b2ab765 100644
--- a/tests/CMakeLists.txt
+++ b/tests/CMakeLists.txt
@@ -1,6 +1,6 @@
-# Copyright 2023 The Khronos Group Inc.
-# Copyright 2023 Valve Corporation
-# Copyright 2023 LunarG, Inc.
+# Copyright 2023-2024 The Khronos Group Inc.
+# Copyright 2023-2024 Valve Corporation
+# Copyright 2023-2024 LunarG, Inc.
 #
 # SPDX-License-Identifier: Apache-2.0
 
@@ -17,6 +17,8 @@ target_include_directories(vul_tests PRIVATE
 
 target_sources(vul_tests PRIVATE
     safe_struct.cpp
+    small_containers.cpp
+    sparse_range_map.cpp
     struct_helper.cpp
     test_formats.cpp
     test_interface.cpp
diff --git a/tests/small_containers.cpp b/tests/small_containers.cpp
new file mode 100644
index 0000000..c9ea873
--- /dev/null
+++ b/tests/small_containers.cpp
@@ -0,0 +1,415 @@
+// Copyright 2024 The Khronos Group Inc.
+// Copyright 2024 Valve Corporation
+// Copyright 2024 LunarG, Inc.
+//
+// SPDX-License-Identifier: Apache-2.0
+//
+
+#include <gtest/gtest.h>
+#include <array>
+#include <limits>
+#include <vector>
+#include <vulkan/utility/vk_small_containers.hpp>
+
+template <typename T, typename U>
+bool HaveSameElementsUpTo(const T& l1, const U& l2, size_t n) {
+    for (size_t i = 0; i < n; ++i) {
+        if (l1[static_cast<typename T::size_type>(i)] != l2[static_cast<typename U::size_type>(i)]) {
+            return false;
+        }
+    }
+    return true;
+}
+
+template <typename T, typename U>
+bool HaveSameElements(const T& l1, const U& l2) {
+    return static_cast<size_t>(l1.size()) == static_cast<size_t>(l2.size()) && HaveSameElementsUpTo(l1, l2, l1.size());
+}
+
+TEST(small_vector, int_resize) {
+    // Resize int small vector, moving to small store
+    // ---
+    {
+        // resize to current size
+        vku::small::vector<int, 2, size_t> v1 = {1, 2, 3, 4};
+        v1.resize(v1.size());
+        std::array<int, 4> ref = {1, 2, 3, 4};
+        ASSERT_TRUE(HaveSameElements(v1, ref));
+    }
+
+    {
+        // growing resize
+        vku::small::vector<int, 2, size_t> v2 = {1, 2, 3, 4};
+        v2.resize(5);
+        std::array<int, 5> ref = {1, 2, 3, 4, 0};
+        ASSERT_TRUE(HaveSameElements(v2, ref));
+    }
+
+    {
+        // shrinking resize
+        vku::small::vector<int, 2, size_t> v3 = {1, 2, 3, 4};
+        const auto v3_cap = v3.capacity();
+        v3.resize(3);
+        ASSERT_TRUE(v3.capacity() == v3_cap);  // Resize doesn't shrink capacity
+        v3.shrink_to_fit();
+        ASSERT_TRUE(v3.capacity() == v3.size());
+        std::array<int, 3> ref = {1, 2, 3};
+        ASSERT_TRUE(HaveSameElements(v3, ref));
+    }
+
+    {
+        // shrink to 0
+        vku::small::vector<int, 2, size_t> v4 = {1, 2, 3, 4};
+        v4.resize(0);
+        ASSERT_TRUE(v4.capacity() == 4);  // Resize doesn't shrink capacity
+        v4.shrink_to_fit();
+        ASSERT_TRUE(v4.capacity() == 2);  // Small capacity is in the minimal
+        std::array<int, 0> ref = {};
+        ASSERT_TRUE(HaveSameElements(v4, ref));
+    }
+
+    {
+        // resize to size limit
+        vku::small::vector<int, 2, uint8_t> v5 = {1, 2, 3, 4};
+        v5.resize(std::numeric_limits<uint8_t>::max());
+        std::vector<int> vec = {1, 2, 3, 4};
+        vec.resize(std::numeric_limits<uint8_t>::max());
+        ASSERT_TRUE(HaveSameElements(v5, vec));
+    }
+
+    // Resize int small vector, not moving to small store
+    // ---
+    {
+        // resize to current size
+        vku::small::vector<int, 2, size_t> v6 = {1, 2, 3, 4};
+        v6.resize(v6.size());
+        std::array<int, 4> ref = {1, 2, 3, 4};
+        ASSERT_TRUE(HaveSameElements(v6, ref));
+    }
+
+    {
+        // growing resize
+        vku::small::vector<int, 2, size_t> v7 = {1, 2, 3, 4};
+        v7.resize(5);
+        std::array<int, 5> ref = {1, 2, 3, 4, 0};
+        ASSERT_TRUE(HaveSameElements(v7, ref));
+    }
+
+    {
+        // shrinking resize
+        vku::small::vector<int, 2, size_t> v8 = {1, 2, 3, 4};
+        v8.resize(3);
+        std::array<int, 3> ref = {1, 2, 3};
+        ASSERT_TRUE(HaveSameElements(v8, ref));
+    }
+
+    {
+        // shrink to 0
+        vku::small::vector<int, 2, size_t> v9 = {1, 2, 3, 4};
+        v9.resize(0);
+        std::array<int, 0> ref = {};
+        ASSERT_TRUE(HaveSameElements(v9, ref));
+    }
+
+    {
+        // resize to size limit
+        vku::small::vector<int, 2, uint8_t> v10 = {1, 2, 3, 4};
+        v10.resize(std::numeric_limits<uint8_t>::max());
+        std::vector<int> vec = {1, 2, 3, 4};
+        vec.resize(std::numeric_limits<uint8_t>::max());
+        ASSERT_TRUE(HaveSameElements(v10, vec));
+    }
+}
+
+struct NoDefaultCons {
+    NoDefaultCons(int x) : x(x) {}
+    int x;
+};
+
+bool operator!=(const NoDefaultCons& lhs, const NoDefaultCons& rhs) { return lhs.x != rhs.x; }
+
+TEST(small_vector, not_default_insertable) {
+    // Resize NoDefault small vector, moving to small store
+    // ---
+    {
+        // resize to current size
+        vku::small::vector<NoDefaultCons, 2, size_t> v1 = {1, 2, 3, 4};
+        v1.resize(v1.size());
+        std::vector<NoDefaultCons> ref = {1, 2, 3, 4};
+        ASSERT_TRUE(HaveSameElements(v1, ref));
+    }
+
+    {
+        // growing resize
+        vku::small::vector<NoDefaultCons, 2, size_t> v2 = {1, 2, 3, 4};
+        v2.resize(5);
+        std::vector<NoDefaultCons> ref = {1, 2, 3, 4};
+        ASSERT_TRUE(HaveSameElementsUpTo(v2, ref, ref.size()));
+    }
+
+    {
+        // shrinking resize
+        vku::small::vector<NoDefaultCons, 2, size_t> v3 = {1, 2, 3, 4};
+        const auto v3_cap = v3.capacity();
+        v3.resize(3);
+        ASSERT_TRUE(v3.capacity() == v3_cap);  // Resize doesn't shrink capacity
+        v3.shrink_to_fit();
+        ASSERT_TRUE(v3.capacity() == v3.size());
+
+        std::vector<NoDefaultCons> ref = {1, 2, 3};
+        ASSERT_TRUE(HaveSameElements(v3, ref));
+    }
+
+    {
+        // shrink to 0
+        vku::small::vector<NoDefaultCons, 2, size_t> v4 = {1, 2, 3, 4};
+        v4.resize(0);
+        ASSERT_TRUE(v4.capacity() == 4);  // Resize doesn't shrink capacity
+        v4.shrink_to_fit();
+        ASSERT_TRUE(v4.capacity() == 2);  // Small capacity is in the minimal
+        std::vector<NoDefaultCons> ref = {};
+        ASSERT_TRUE(HaveSameElements(v4, ref));
+    }
+
+    // Resize NoDefault small vector, not moving to small store
+    // ---
+    {
+        // resize to current size
+        vku::small::vector<NoDefaultCons, 2, size_t> v6 = {1, 2, 3, 4};
+        v6.resize(v6.size());
+        std::vector<NoDefaultCons> ref = {1, 2, 3, 4};
+        ASSERT_TRUE(HaveSameElements(v6, ref));
+    }
+
+    {
+        // growing resize
+        vku::small::vector<NoDefaultCons, 2, size_t> v7 = {1, 2, 3, 4};
+        v7.resize(5);
+        std::vector<NoDefaultCons> ref = {1, 2, 3, 4};
+        ASSERT_TRUE(HaveSameElementsUpTo(v7, ref, ref.size()));
+    }
+
+    {
+        // shrinking resize
+        vku::small::vector<NoDefaultCons, 2, size_t> v8 = {1, 2, 3, 4};
+        v8.resize(3);
+        std::vector<NoDefaultCons> ref = {1, 2, 3};
+        ASSERT_TRUE(HaveSameElements(v8, ref));
+    }
+
+    {
+        // shrink to 0
+        vku::small::vector<NoDefaultCons, 2, size_t> v9 = {1, 2, 3, 4};
+        v9.resize(0);
+        std::vector<NoDefaultCons> ref = {};
+        ASSERT_TRUE(HaveSameElements(v9, ref));
+    }
+}
+
+TEST(small_vector, not_default_insertable_default_value) {
+    // Resize NoDefault small vector, moving to small store
+    // ---
+    {
+        // resize to current size
+        vku::small::vector<NoDefaultCons, 2, size_t> v1 = {1, 2, 3, 4};
+        v1.resize(v1.size(), NoDefaultCons(0));
+        std::vector<NoDefaultCons> ref = {1, 2, 3, 4};
+        ASSERT_TRUE(HaveSameElements(v1, ref));
+    }
+
+    {
+        // growing resize
+        vku::small::vector<NoDefaultCons, 2, size_t> v2 = {1, 2, 3, 4};
+        v2.resize(5, NoDefaultCons(0));
+        std::vector<NoDefaultCons> ref = {1, 2, 3, 4, 0};
+        ASSERT_TRUE(HaveSameElements(v2, ref));
+    }
+
+    {
+        // shrinking resize
+        vku::small::vector<NoDefaultCons, 2, size_t> v3 = {1, 2, 3, 4};
+        v3.resize(3, NoDefaultCons(0));
+        v3.shrink_to_fit();
+        ASSERT_TRUE(v3.capacity() == v3.size());
+        std::vector<NoDefaultCons> ref = {1, 2, 3};
+        ASSERT_TRUE(HaveSameElements(v3, ref));
+    }
+
+    {
+        // shrink to 0
+        vku::small::vector<NoDefaultCons, 2, size_t> v4 = {1, 2, 3, 4};
+        v4.resize(0, NoDefaultCons(0));
+        ASSERT_TRUE(v4.capacity() == 4);  // Resize doesn't shrink capacity
+        v4.shrink_to_fit();
+        ASSERT_TRUE(v4.capacity() == 2);  // Small capacity is in the minimal
+        std::vector<NoDefaultCons> ref = {};
+        ASSERT_TRUE(HaveSameElements(v4, ref));
+    }
+
+    // Resize NoDefault small vector, not moving to small store
+    // ---
+    {
+        // resize to current size
+        vku::small::vector<NoDefaultCons, 2, size_t> v6 = {1, 2, 3, 4};
+        v6.resize(v6.size());
+        std::vector<NoDefaultCons> ref = {1, 2, 3, 4};
+        ASSERT_TRUE(HaveSameElements(v6, ref));
+    }
+
+    {
+        // growing resize
+        vku::small::vector<NoDefaultCons, 2, size_t> v7 = {1, 2, 3, 4};
+        v7.resize(5, NoDefaultCons(0));
+        std::vector<NoDefaultCons> ref = {1, 2, 3, 4, 0};
+        ASSERT_TRUE(HaveSameElements(v7, ref));
+    }
+
+    {
+        // shrinking resize
+        vku::small::vector<NoDefaultCons, 2, size_t> v8 = {1, 2, 3, 4};
+        v8.resize(3, NoDefaultCons(0));
+        ASSERT_TRUE(v8.capacity() == 4);  // Resize doesn't shrink capacity
+        std::vector<NoDefaultCons> ref = {1, 2, 3};
+        ASSERT_TRUE(HaveSameElements(v8, ref));
+    }
+
+    {
+        // shrink to 0
+        vku::small::vector<NoDefaultCons, 2, size_t> v9 = {1, 2, 3, 4};
+        v9.resize(0, NoDefaultCons(0));
+        ASSERT_TRUE(v9.capacity() == 4);  // Resize doesn't shrink capacity
+        std::vector<NoDefaultCons> ref = {};
+        ASSERT_TRUE(HaveSameElements(v9, ref));
+    }
+}
+TEST(small_vector, construct) {
+    using SmallVector = vku::small::vector<std::string, 5, size_t>;
+    const SmallVector ref_small = {"one", "two", "three", "four"};
+    SmallVector ref_large = {"one", "two", "three", "four", "five", "six"};
+
+    // Small construct and emplace vs. list (tests list contruction, really)
+    SmallVector v_small_emplace;
+    v_small_emplace.emplace_back("one");
+    v_small_emplace.emplace_back("two");
+    v_small_emplace.emplace_back("three");
+    v_small_emplace.emplace_back("four");
+    ASSERT_TRUE(HaveSameElements(ref_small, v_small_emplace));
+
+    // Copy construct from small_store
+    SmallVector v_small_copy(ref_small);
+    ASSERT_TRUE(HaveSameElements(ref_small, v_small_copy));
+
+    // Move construct from small_store
+    SmallVector v_small_move_src(ref_small);
+    SmallVector v_small_move_dst(std::move(v_small_move_src));
+    ASSERT_TRUE(HaveSameElements(ref_small, v_small_move_dst));
+
+    // Small construct and emplace vs. list (tests list contruction, really)
+    SmallVector v_large_emplace;
+    v_large_emplace.emplace_back("one");
+    v_large_emplace.emplace_back("two");
+    v_large_emplace.emplace_back("three");
+    v_large_emplace.emplace_back("four");
+    v_large_emplace.emplace_back("five");
+    v_large_emplace.emplace_back("six");
+    ASSERT_TRUE(HaveSameElements(ref_large, v_large_emplace));
+
+    // Copy construct from large_store
+    SmallVector v_large_copy(ref_large);
+    ASSERT_TRUE(HaveSameElements(ref_large, v_large_copy));
+
+    // Move construct from large_store
+    SmallVector v_large_move_src(ref_large);
+    SmallVector v_large_move_dst(std::move(v_large_move_src));
+    ASSERT_TRUE(HaveSameElements(ref_large, v_large_move_dst));
+}
+
+TEST(small_vector, assign) {
+    using SmallVector = vku::small::vector<std::string, 5, size_t>;
+    const SmallVector ref_xxs = {"one", "two"};
+    const SmallVector ref_xs = {"one", "two", "three"};
+    const SmallVector ref_small = {"one", "two", "three", "four"};
+
+    const SmallVector ref_large = {"one", "two", "three", "four", "five", "six"};
+    const SmallVector ref_xl = {"one", "two", "three", "four", "five", "six", "seven"};
+    const SmallVector ref_xxl = {"one", "two", "three", "four", "five", "six", "seven", "eight"};
+
+    SmallVector v_src(ref_large);
+    SmallVector v_dst(ref_small);
+
+    // Copy from large store to small store
+    v_dst = v_src;
+    ASSERT_TRUE(HaveSameElements(ref_large, v_src));
+    ASSERT_TRUE(HaveSameElements(ref_large, v_dst));
+
+    // Quick small to large check to reset...
+    v_dst = ref_small;
+    ASSERT_TRUE(HaveSameElements(ref_small, v_dst));
+
+    // Copy from large store to small store
+    v_dst = std::move(v_src);
+    // Spec doesn't require src to be empty after move *assignment*
+    ASSERT_TRUE(HaveSameElements(ref_large, v_dst));
+
+    // Same store type copy/move
+
+    // Small
+    //
+    // Copy small to small reducing
+    v_src = ref_xs;
+    v_dst = ref_small;
+    v_dst = v_src;
+    ASSERT_TRUE(HaveSameElements(ref_xs, v_src));
+    ASSERT_TRUE(HaveSameElements(ref_xs, v_dst));
+
+    // Move small to small reducing
+    v_src = ref_xs;
+    v_dst = ref_small;
+    v_dst = std::move(v_src);
+    // Small move operators don't empty source
+    ASSERT_TRUE(HaveSameElements(ref_xs, v_dst));
+
+    // Copy small to small increasing
+    v_src = ref_small;
+    v_dst = ref_xs;
+    v_dst = v_src;
+    ASSERT_TRUE(HaveSameElements(ref_small, v_src));
+    ASSERT_TRUE(HaveSameElements(ref_small, v_dst));
+
+    // Move small to small increasing
+    v_src = ref_small;
+    v_dst = ref_xs;
+    v_dst = std::move(v_src);
+    // Small move operators don't empty source
+    ASSERT_TRUE(HaveSameElements(ref_small, v_dst));
+
+    // Large
+    //
+    // Copy large to large reducing
+    v_src = ref_large;
+    v_dst = ref_xl;
+    v_dst = v_src;
+    ASSERT_TRUE(HaveSameElements(ref_large, v_src));
+    ASSERT_TRUE(HaveSameElements(ref_large, v_dst));
+
+    // Move large to large reducing
+    v_src = ref_large;
+    v_dst = ref_xl;
+    v_dst = std::move(v_src);
+    ASSERT_TRUE(v_src.empty());  // Since large moves move the large store, the source is empty, but not required by spec of vector
+    ASSERT_TRUE(HaveSameElements(ref_large, v_dst));
+
+    // Copy large to large increasing
+    v_src = ref_xxl;
+    v_dst = ref_xl;
+    v_dst = v_src;
+    ASSERT_TRUE(HaveSameElements(ref_xxl, v_src));
+    ASSERT_TRUE(HaveSameElements(ref_xxl, v_dst));
+
+    // Move large to large increasing
+    v_src = ref_xxl;
+    v_dst = ref_xl;
+    v_dst = std::move(v_src);
+    ASSERT_TRUE(v_src.empty());
+    ASSERT_TRUE(HaveSameElements(ref_xxl, v_dst));
+}
diff --git a/tests/sparse_range_map.cpp b/tests/sparse_range_map.cpp
new file mode 100644
index 0000000..fec61a9
--- /dev/null
+++ b/tests/sparse_range_map.cpp
@@ -0,0 +1,43 @@
+// Copyright 2024 The Khronos Group Inc.
+// Copyright 2024 Valve Corporation
+// Copyright 2024 LunarG, Inc.
+//
+// SPDX-License-Identifier: Apache-2.0
+//
+
+#include <gtest/gtest.h>
+#include <string>
+#include <utility>
+#include <vulkan/utility/vk_sparse_range_map.hpp>
+
+TEST(sparse_range_map, basic) {
+    vku::sparse::range_map<uint32_t, std::string> map;
+
+    map.insert(std::make_pair(vku::sparse::range<uint32_t>(0, 100), "first"));
+    map.insert(std::make_pair(vku::sparse::range<uint32_t>(500, 501), "second"));
+
+    auto iter = map.find(42);
+    ASSERT_NE(iter, map.end());
+    ASSERT_EQ(0, iter->first.begin);
+    ASSERT_EQ(100, iter->first.end);
+    ASSERT_EQ("first", iter->second);
+
+    iter = map.find(501);
+    ASSERT_EQ(iter, map.end());
+}
+
+TEST(sparse_range_map, small) {
+    vku::sparse::small_range_map<uint32_t, std::string> map;
+
+    map.insert(std::make_pair(vku::sparse::range<uint32_t>(0, 10), "first"));
+    map.insert(std::make_pair(vku::sparse::range<uint32_t>(50, 51), "second"));
+
+    auto iter = map.find(4);
+    ASSERT_NE(iter, map.end());
+    ASSERT_EQ(0, iter->first.begin);
+    ASSERT_EQ(10, iter->first.end);
+    ASSERT_EQ("first", iter->second);
+
+    iter = map.find(51);
+    ASSERT_EQ(iter, map.end());
+}