SDL/test/testautomation_audio.c
Sam Lantinga 4f55271571 Removed temporary memory from the API
It was intended to make the API easier to use, but various automatic garbage collection all had flaws, and making the application periodically clean up temporary memory added cognitive load to using the API, and in many cases was it was difficult to restructure threaded code to handle this.

So, we're largely going back to the original system, where the API returns allocated results and you free them.

In addition, to solve the problems we originally wanted temporary memory for:
* Short strings with a finite count, like device names, get stored in a per-thread string pool.
* Events continue to use temporary memory internally, which is cleaned up on the next event processing cycle.
2024-07-26 20:59:14 -07:00

1477 lines
52 KiB
C

/**
* Original code: automated SDL audio test written by Edgar Simo "bobbens"
* New/updated tests: aschiffler at ferzkopp dot net
*/
/* quiet windows compiler warnings */
#if defined(_MSC_VER) && !defined(_CRT_SECURE_NO_WARNINGS)
#define _CRT_SECURE_NO_WARNINGS
#endif
#include <math.h>
#include <stdio.h>
#include <SDL3/SDL.h>
#include <SDL3/SDL_test.h>
#include "testautomation_suites.h"
/* ================= Test Case Implementation ================== */
/* Fixture */
static void audioSetUp(void *arg)
{
/* Start SDL audio subsystem */
int ret = SDL_InitSubSystem(SDL_INIT_AUDIO);
SDLTest_AssertPass("Call to SDL_InitSubSystem(SDL_INIT_AUDIO)");
SDLTest_AssertCheck(ret == 0, "Check result from SDL_InitSubSystem(SDL_INIT_AUDIO)");
if (ret != 0) {
SDLTest_LogError("%s", SDL_GetError());
}
}
static void audioTearDown(void *arg)
{
/* Remove a possibly created file from SDL disk writer audio driver; ignore errors */
(void)remove("sdlaudio.raw");
SDLTest_AssertPass("Cleanup of test files completed");
}
#if 0 /* !!! FIXME: maybe update this? */
/* Global counter for callback invocation */
static int g_audio_testCallbackCounter;
/* Global accumulator for total callback length */
static int g_audio_testCallbackLength;
/* Test callback function */
static void SDLCALL audio_testCallback(void *userdata, Uint8 *stream, int len)
{
/* track that callback was called */
g_audio_testCallbackCounter++;
g_audio_testCallbackLength += len;
}
#endif
static SDL_AudioDeviceID g_audio_id = 0;
/* Test case functions */
/**
* Stop and restart audio subsystem
*
* \sa SDL_QuitSubSystem
* \sa SDL_InitSubSystem
*/
static int audio_quitInitAudioSubSystem(void *arg)
{
/* Stop SDL audio subsystem */
SDL_QuitSubSystem(SDL_INIT_AUDIO);
SDLTest_AssertPass("Call to SDL_QuitSubSystem(SDL_INIT_AUDIO)");
/* Restart audio again */
audioSetUp(NULL);
return TEST_COMPLETED;
}
/**
* Start and stop audio directly
*
* \sa SDL_InitAudio
* \sa SDL_QuitAudio
*/
static int audio_initQuitAudio(void *arg)
{
int result;
int i, iMax;
const char *audioDriver;
const char *hint = SDL_GetHint(SDL_HINT_AUDIO_DRIVER);
/* Stop SDL audio subsystem */
SDL_QuitSubSystem(SDL_INIT_AUDIO);
SDLTest_AssertPass("Call to SDL_QuitSubSystem(SDL_INIT_AUDIO)");
/* Loop over all available audio drivers */
iMax = SDL_GetNumAudioDrivers();
SDLTest_AssertPass("Call to SDL_GetNumAudioDrivers()");
SDLTest_AssertCheck(iMax > 0, "Validate number of audio drivers; expected: >0 got: %d", iMax);
for (i = 0; i < iMax; i++) {
audioDriver = SDL_GetAudioDriver(i);
SDLTest_AssertPass("Call to SDL_GetAudioDriver(%d)", i);
SDLTest_Assert(audioDriver != NULL, "Audio driver name is not NULL");
SDLTest_AssertCheck(audioDriver[0] != '\0', "Audio driver name is not empty; got: %s", audioDriver); /* NOLINT(clang-analyzer-core.NullDereference): Checked for NULL above */
if (hint && SDL_strcmp(audioDriver, hint) != 0) {
continue;
}
/* Call Init */
SDL_SetHint(SDL_HINT_AUDIO_DRIVER, audioDriver);
result = SDL_InitSubSystem(SDL_INIT_AUDIO);
SDLTest_AssertPass("Call to SDL_InitSubSystem(SDL_INIT_AUDIO) with driver='%s'", audioDriver);
SDLTest_AssertCheck(result == 0, "Validate result value; expected: 0 got: %d", result);
/* Call Quit */
SDL_QuitSubSystem(SDL_INIT_AUDIO);
SDLTest_AssertPass("Call to SDL_QuitSubSystem(SDL_INIT_AUDIO)");
}
/* NULL driver specification */
audioDriver = NULL;
/* Call Init */
SDL_SetHint(SDL_HINT_AUDIO_DRIVER, audioDriver);
result = SDL_InitSubSystem(SDL_INIT_AUDIO);
SDLTest_AssertPass("Call to SDL_AudioInit(NULL)");
SDLTest_AssertCheck(result == 0, "Validate result value; expected: 0 got: %d", result);
/* Call Quit */
SDL_QuitSubSystem(SDL_INIT_AUDIO);
SDLTest_AssertPass("Call to SDL_QuitSubSystem(SDL_INIT_AUDIO)");
/* Restart audio again */
audioSetUp(NULL);
return TEST_COMPLETED;
}
/**
* Start, open, close and stop audio
*
* \sa SDL_InitAudio
* \sa SDL_OpenAudioDevice
* \sa SDL_CloseAudioDevice
* \sa SDL_QuitAudio
*/
static int audio_initOpenCloseQuitAudio(void *arg)
{
int result;
int i, iMax, j, k;
const char *audioDriver;
SDL_AudioSpec desired;
const char *hint = SDL_GetHint(SDL_HINT_AUDIO_DRIVER);
/* Stop SDL audio subsystem */
SDL_QuitSubSystem(SDL_INIT_AUDIO);
SDLTest_AssertPass("Call to SDL_QuitSubSystem(SDL_INIT_AUDIO)");
/* Loop over all available audio drivers */
iMax = SDL_GetNumAudioDrivers();
SDLTest_AssertPass("Call to SDL_GetNumAudioDrivers()");
SDLTest_AssertCheck(iMax > 0, "Validate number of audio drivers; expected: >0 got: %d", iMax);
for (i = 0; i < iMax; i++) {
audioDriver = SDL_GetAudioDriver(i);
SDLTest_AssertPass("Call to SDL_GetAudioDriver(%d)", i);
SDLTest_Assert(audioDriver != NULL, "Audio driver name is not NULL");
SDLTest_AssertCheck(audioDriver[0] != '\0', "Audio driver name is not empty; got: %s", audioDriver); /* NOLINT(clang-analyzer-core.NullDereference): Checked for NULL above */
if (hint && SDL_strcmp(audioDriver, hint) != 0) {
continue;
}
/* Change specs */
for (j = 0; j < 2; j++) {
/* Call Init */
SDL_SetHint(SDL_HINT_AUDIO_DRIVER, audioDriver);
result = SDL_InitSubSystem(SDL_INIT_AUDIO);
SDLTest_AssertPass("Call to SDL_InitSubSystem(SDL_INIT_AUDIO) with driver='%s'", audioDriver);
SDLTest_AssertCheck(result == 0, "Validate result value; expected: 0 got: %d", result);
/* Set spec */
SDL_zero(desired);
switch (j) {
case 0:
/* Set standard desired spec */
desired.freq = 22050;
desired.format = SDL_AUDIO_S16;
desired.channels = 2;
break;
case 1:
/* Set custom desired spec */
desired.freq = 48000;
desired.format = SDL_AUDIO_F32;
desired.channels = 2;
break;
}
/* Call Open (maybe multiple times) */
for (k = 0; k <= j; k++) {
result = SDL_OpenAudioDevice(SDL_AUDIO_DEVICE_DEFAULT_PLAYBACK, &desired);
if (k == 0) {
g_audio_id = result;
}
SDLTest_AssertPass("Call to SDL_OpenAudioDevice(SDL_AUDIO_DEVICE_DEFAULT_PLAYBACK, desired_spec_%d), call %d", j, k + 1);
SDLTest_AssertCheck(result > 0, "Verify return value; expected: > 0, got: %d", result);
}
/* Call Close (maybe multiple times) */
for (k = 0; k <= j; k++) {
SDL_CloseAudioDevice(g_audio_id);
SDLTest_AssertPass("Call to SDL_CloseAudioDevice(), call %d", k + 1);
}
/* Call Quit (maybe multiple times) */
for (k = 0; k <= j; k++) {
SDL_QuitSubSystem(SDL_INIT_AUDIO);
SDLTest_AssertPass("Call to SDL_QuitSubSystem(SDL_INIT_AUDIO), call %d", k + 1);
}
} /* spec loop */
} /* driver loop */
/* Restart audio again */
audioSetUp(NULL);
return TEST_COMPLETED;
}
/**
* Pause and unpause audio
*
* \sa SDL_PauseAudioDevice
* \sa SDL_PlayAudioDevice
*/
static int audio_pauseUnpauseAudio(void *arg)
{
int iMax;
int i, j /*, k, l*/;
int result;
const char *audioDriver;
SDL_AudioSpec desired;
const char *hint = SDL_GetHint(SDL_HINT_AUDIO_DRIVER);
/* Stop SDL audio subsystem */
SDL_QuitSubSystem(SDL_INIT_AUDIO);
SDLTest_AssertPass("Call to SDL_QuitSubSystem(SDL_INIT_AUDIO)");
/* Loop over all available audio drivers */
iMax = SDL_GetNumAudioDrivers();
SDLTest_AssertPass("Call to SDL_GetNumAudioDrivers()");
SDLTest_AssertCheck(iMax > 0, "Validate number of audio drivers; expected: >0 got: %d", iMax);
for (i = 0; i < iMax; i++) {
audioDriver = SDL_GetAudioDriver(i);
SDLTest_AssertPass("Call to SDL_GetAudioDriver(%d)", i);
SDLTest_Assert(audioDriver != NULL, "Audio driver name is not NULL");
SDLTest_AssertCheck(audioDriver[0] != '\0', "Audio driver name is not empty; got: %s", audioDriver); /* NOLINT(clang-analyzer-core.NullDereference): Checked for NULL above */
if (hint && SDL_strcmp(audioDriver, hint) != 0) {
continue;
}
/* Change specs */
for (j = 0; j < 2; j++) {
/* Call Init */
SDL_SetHint(SDL_HINT_AUDIO_DRIVER, audioDriver);
result = SDL_InitSubSystem(SDL_INIT_AUDIO);
SDLTest_AssertPass("Call to SDL_InitSubSystem(SDL_INIT_AUDIO) with driver='%s'", audioDriver);
SDLTest_AssertCheck(result == 0, "Validate result value; expected: 0 got: %d", result);
/* Set spec */
SDL_zero(desired);
switch (j) {
case 0:
/* Set standard desired spec */
desired.freq = 22050;
desired.format = SDL_AUDIO_S16;
desired.channels = 2;
break;
case 1:
/* Set custom desired spec */
desired.freq = 48000;
desired.format = SDL_AUDIO_F32;
desired.channels = 2;
break;
}
/* Call Open */
g_audio_id = SDL_OpenAudioDevice(SDL_AUDIO_DEVICE_DEFAULT_PLAYBACK, &desired);
result = g_audio_id;
SDLTest_AssertPass("Call to SDL_OpenAudioDevice(SDL_AUDIO_DEVICE_DEFAULT_PLAYBACK, desired_spec_%d)", j);
SDLTest_AssertCheck(result > 0, "Verify return value; expected > 0 got: %d", result);
#if 0 /* !!! FIXME: maybe update this? */
/* Start and stop audio multiple times */
for (l = 0; l < 3; l++) {
SDLTest_Log("Pause/Unpause iteration: %d", l + 1);
/* Reset callback counters */
g_audio_testCallbackCounter = 0;
g_audio_testCallbackLength = 0;
/* Un-pause audio to start playing (maybe multiple times) */
for (k = 0; k <= j; k++) {
SDL_PlayAudioDevice(g_audio_id);
SDLTest_AssertPass("Call to SDL_PlayAudioDevice(g_audio_id), call %d", k + 1);
}
/* Wait for callback */
int totalDelay = 0;
do {
SDL_Delay(10);
totalDelay += 10;
} while (g_audio_testCallbackCounter == 0 && totalDelay < 1000);
SDLTest_AssertCheck(g_audio_testCallbackCounter > 0, "Verify callback counter; expected: >0 got: %d", g_audio_testCallbackCounter);
SDLTest_AssertCheck(g_audio_testCallbackLength > 0, "Verify callback length; expected: >0 got: %d", g_audio_testCallbackLength);
/* Pause audio to stop playing (maybe multiple times) */
for (k = 0; k <= j; k++) {
const int pause_on = (k == 0) ? 1 : SDLTest_RandomIntegerInRange(99, 9999);
if (pause_on) {
SDL_PauseAudioDevice(g_audio_id);
SDLTest_AssertPass("Call to SDL_PauseAudioDevice(g_audio_id), call %d", k + 1);
} else {
SDL_PlayAudioDevice(g_audio_id);
SDLTest_AssertPass("Call to SDL_PlayAudioDevice(g_audio_id), call %d", k + 1);
}
}
/* Ensure callback is not called again */
const int originalCounter = g_audio_testCallbackCounter;
SDL_Delay(totalDelay + 10);
SDLTest_AssertCheck(originalCounter == g_audio_testCallbackCounter, "Verify callback counter; expected: %d, got: %d", originalCounter, g_audio_testCallbackCounter);
}
#endif
/* Call Close */
SDL_CloseAudioDevice(g_audio_id);
SDLTest_AssertPass("Call to SDL_CloseAudioDevice()");
/* Call Quit */
SDL_QuitSubSystem(SDL_INIT_AUDIO);
SDLTest_AssertPass("Call to SDL_QuitSubSystem(SDL_INIT_AUDIO)");
} /* spec loop */
} /* driver loop */
/* Restart audio again */
audioSetUp(NULL);
return TEST_COMPLETED;
}
/**
* Enumerate and name available audio devices (playback and recording).
*
* \sa SDL_GetNumAudioDevices
* \sa SDL_GetAudioDeviceName
*/
static int audio_enumerateAndNameAudioDevices(void *arg)
{
int t;
int i, n;
const char *name;
SDL_AudioDeviceID *devices;
/* Iterate over types: t=0 playback device, t=1 recording device */
for (t = 0; t < 2; t++) {
/* Get number of devices. */
devices = (t) ? SDL_GetAudioRecordingDevices(&n) : SDL_GetAudioPlaybackDevices(&n);
SDLTest_AssertPass("Call to SDL_GetAudio%sDevices(%i)", (t) ? "Recording" : "Playback", t);
SDLTest_Log("Number of %s devices < 0, reported as %i", (t) ? "recording" : "playback", n);
SDLTest_AssertCheck(n >= 0, "Validate result is >= 0, got: %i", n);
/* List devices. */
if (n > 0) {
SDLTest_AssertCheck(devices != NULL, "Validate devices is not NULL if n > 0");
for (i = 0; i < n; i++) {
name = SDL_GetAudioDeviceName(devices[i]);
SDLTest_AssertPass("Call to SDL_GetAudioDeviceName(%i)", i);
SDLTest_AssertCheck(name != NULL, "Verify result from SDL_GetAudioDeviceName(%i) is not NULL", i);
if (name != NULL) {
SDLTest_AssertCheck(name[0] != '\0', "verify result from SDL_GetAudioDeviceName(%i) is not empty, got: '%s'", i, name);
}
}
}
SDL_free(devices);
}
return TEST_COMPLETED;
}
/**
* Negative tests around enumeration and naming of audio devices.
*
* \sa SDL_GetNumAudioDevices
* \sa SDL_GetAudioDeviceName
*/
static int audio_enumerateAndNameAudioDevicesNegativeTests(void *arg)
{
return TEST_COMPLETED; /* nothing in here atm since these interfaces changed in SDL3. */
}
/**
* Checks available audio driver names.
*
* \sa SDL_GetNumAudioDrivers
* \sa SDL_GetAudioDriver
*/
static int audio_printAudioDrivers(void *arg)
{
int i, n;
const char *name;
/* Get number of drivers */
n = SDL_GetNumAudioDrivers();
SDLTest_AssertPass("Call to SDL_GetNumAudioDrivers()");
SDLTest_AssertCheck(n >= 0, "Verify number of audio drivers >= 0, got: %i", n);
/* List drivers. */
if (n > 0) {
for (i = 0; i < n; i++) {
name = SDL_GetAudioDriver(i);
SDLTest_AssertPass("Call to SDL_GetAudioDriver(%i)", i);
SDLTest_AssertCheck(name != NULL, "Verify returned name is not NULL");
if (name != NULL) {
SDLTest_AssertCheck(name[0] != '\0', "Verify returned name is not empty, got: '%s'", name);
}
}
}
return TEST_COMPLETED;
}
/**
* Checks current audio driver name with initialized audio.
*
* \sa SDL_GetCurrentAudioDriver
*/
static int audio_printCurrentAudioDriver(void *arg)
{
/* Check current audio driver */
const char *name = SDL_GetCurrentAudioDriver();
SDLTest_AssertPass("Call to SDL_GetCurrentAudioDriver()");
SDLTest_AssertCheck(name != NULL, "Verify returned name is not NULL");
if (name != NULL) {
SDLTest_AssertCheck(name[0] != '\0', "Verify returned name is not empty, got: '%s'", name);
}
return TEST_COMPLETED;
}
/* Definition of all formats, channels, and frequencies used to test audio conversions */
static SDL_AudioFormat g_audioFormats[] = {
SDL_AUDIO_S8, SDL_AUDIO_U8,
SDL_AUDIO_S16LE, SDL_AUDIO_S16BE,
SDL_AUDIO_S32LE, SDL_AUDIO_S32BE,
SDL_AUDIO_F32LE, SDL_AUDIO_F32BE
};
static const char *g_audioFormatsVerbose[] = {
"SDL_AUDIO_S8", "SDL_AUDIO_U8",
"SDL_AUDIO_S16LE", "SDL_AUDIO_S16BE",
"SDL_AUDIO_S32LE", "SDL_AUDIO_S32BE",
"SDL_AUDIO_F32LE", "SDL_AUDIO_F32BE"
};
static const int g_numAudioFormats = SDL_arraysize(g_audioFormats);
static Uint8 g_audioChannels[] = { 1, 2, 4, 6 };
static const int g_numAudioChannels = SDL_arraysize(g_audioChannels);
static int g_audioFrequencies[] = { 11025, 22050, 44100, 48000 };
static const int g_numAudioFrequencies = SDL_arraysize(g_audioFrequencies);
/* Verify the audio formats are laid out as expected */
SDL_COMPILE_TIME_ASSERT(SDL_AUDIO_U8_FORMAT, SDL_AUDIO_U8 == SDL_AUDIO_BITSIZE(8));
SDL_COMPILE_TIME_ASSERT(SDL_AUDIO_S8_FORMAT, SDL_AUDIO_S8 == (SDL_AUDIO_BITSIZE(8) | SDL_AUDIO_MASK_SIGNED));
SDL_COMPILE_TIME_ASSERT(SDL_AUDIO_S16LE_FORMAT, SDL_AUDIO_S16LE == (SDL_AUDIO_BITSIZE(16) | SDL_AUDIO_MASK_SIGNED));
SDL_COMPILE_TIME_ASSERT(SDL_AUDIO_S16BE_FORMAT, SDL_AUDIO_S16BE == (SDL_AUDIO_S16LE | SDL_AUDIO_MASK_BIG_ENDIAN));
SDL_COMPILE_TIME_ASSERT(SDL_AUDIO_S32LE_FORMAT, SDL_AUDIO_S32LE == (SDL_AUDIO_BITSIZE(32) | SDL_AUDIO_MASK_SIGNED));
SDL_COMPILE_TIME_ASSERT(SDL_AUDIO_S32BE_FORMAT, SDL_AUDIO_S32BE == (SDL_AUDIO_S32LE | SDL_AUDIO_MASK_BIG_ENDIAN));
SDL_COMPILE_TIME_ASSERT(SDL_AUDIO_F32LE_FORMAT, SDL_AUDIO_F32LE == (SDL_AUDIO_BITSIZE(32) | SDL_AUDIO_MASK_FLOAT | SDL_AUDIO_MASK_SIGNED));
SDL_COMPILE_TIME_ASSERT(SDL_AUDIO_F32BE_FORMAT, SDL_AUDIO_F32BE == (SDL_AUDIO_F32LE | SDL_AUDIO_MASK_BIG_ENDIAN));
/**
* Builds various audio conversion structures
*
* \sa SDL_CreateAudioStream
*/
static int audio_buildAudioStream(void *arg)
{
SDL_AudioStream *stream;
SDL_AudioSpec spec1;
SDL_AudioSpec spec2;
int i, ii, j, jj, k, kk;
SDL_zero(spec1);
SDL_zero(spec2);
/* Call Quit */
SDL_QuitSubSystem(SDL_INIT_AUDIO);
SDLTest_AssertPass("Call to SDL_QuitSubSystem(SDL_INIT_AUDIO)");
/* No conversion needed */
spec1.format = SDL_AUDIO_S16LE;
spec1.channels = 2;
spec1.freq = 22050;
stream = SDL_CreateAudioStream(&spec1, &spec1);
SDLTest_AssertPass("Call to SDL_CreateAudioStream(spec1 ==> spec1)");
SDLTest_AssertCheck(stream != NULL, "Verify stream value; expected: != NULL, got: %p", (void *)stream);
SDL_DestroyAudioStream(stream);
/* Typical conversion */
spec1.format = SDL_AUDIO_S8;
spec1.channels = 1;
spec1.freq = 22050;
spec2.format = SDL_AUDIO_S16LE;
spec2.channels = 2;
spec2.freq = 44100;
stream = SDL_CreateAudioStream(&spec1, &spec2);
SDLTest_AssertPass("Call to SDL_CreateAudioStream(spec1 ==> spec2)");
SDLTest_AssertCheck(stream != NULL, "Verify stream value; expected: != NULL, got: %p", (void *)stream);
SDL_DestroyAudioStream(stream);
/* All source conversions with random conversion targets, allow 'null' conversions */
for (i = 0; i < g_numAudioFormats; i++) {
for (j = 0; j < g_numAudioChannels; j++) {
for (k = 0; k < g_numAudioFrequencies; k++) {
spec1.format = g_audioFormats[i];
spec1.channels = g_audioChannels[j];
spec1.freq = g_audioFrequencies[k];
ii = SDLTest_RandomIntegerInRange(0, g_numAudioFormats - 1);
jj = SDLTest_RandomIntegerInRange(0, g_numAudioChannels - 1);
kk = SDLTest_RandomIntegerInRange(0, g_numAudioFrequencies - 1);
spec2.format = g_audioFormats[ii];
spec2.channels = g_audioChannels[jj];
spec2.freq = g_audioFrequencies[kk];
stream = SDL_CreateAudioStream(&spec1, &spec2);
SDLTest_AssertPass("Call to SDL_CreateAudioStream(format[%i]=%s(%i),channels[%i]=%i,freq[%i]=%i ==> format[%i]=%s(%i),channels[%i]=%i,freq[%i]=%i)",
i, g_audioFormatsVerbose[i], spec1.format, j, spec1.channels, k, spec1.freq, ii, g_audioFormatsVerbose[ii], spec2.format, jj, spec2.channels, kk, spec2.freq);
SDLTest_AssertCheck(stream != NULL, "Verify stream value; expected: != NULL, got: %p", (void *)stream);
if (stream == NULL) {
SDLTest_LogError("%s", SDL_GetError());
}
SDL_DestroyAudioStream(stream);
}
}
}
/* Restart audio again */
audioSetUp(NULL);
return TEST_COMPLETED;
}
/**
* Checks calls with invalid input to SDL_CreateAudioStream
*
* \sa SDL_CreateAudioStream
*/
static int audio_buildAudioStreamNegative(void *arg)
{
const char *error;
SDL_AudioStream *stream;
SDL_AudioSpec spec1;
SDL_AudioSpec spec2;
int i;
char message[256];
SDL_zero(spec1);
SDL_zero(spec2);
/* Valid format */
spec1.format = SDL_AUDIO_S8;
spec1.channels = 1;
spec1.freq = 22050;
spec2.format = SDL_AUDIO_S16LE;
spec2.channels = 2;
spec2.freq = 44100;
SDL_ClearError();
SDLTest_AssertPass("Call to SDL_ClearError()");
/* Invalid conversions */
for (i = 1; i < 64; i++) {
/* Valid format to start with */
spec1.format = SDL_AUDIO_S8;
spec1.channels = 1;
spec1.freq = 22050;
spec2.format = SDL_AUDIO_S16LE;
spec2.channels = 2;
spec2.freq = 44100;
SDL_ClearError();
SDLTest_AssertPass("Call to SDL_ClearError()");
/* Set various invalid format inputs */
SDL_strlcpy(message, "Invalid: ", 256);
if (i & 1) {
SDL_strlcat(message, " spec1.format", 256);
spec1.format = 0;
}
if (i & 2) {
SDL_strlcat(message, " spec1.channels", 256);
spec1.channels = 0;
}
if (i & 4) {
SDL_strlcat(message, " spec1.freq", 256);
spec1.freq = 0;
}
if (i & 8) {
SDL_strlcat(message, " spec2.format", 256);
spec2.format = 0;
}
if (i & 16) {
SDL_strlcat(message, " spec2.channels", 256);
spec2.channels = 0;
}
if (i & 32) {
SDL_strlcat(message, " spec2.freq", 256);
spec2.freq = 0;
}
SDLTest_Log("%s", message);
stream = SDL_CreateAudioStream(&spec1, &spec2);
SDLTest_AssertPass("Call to SDL_CreateAudioStream(spec1 ==> spec2)");
SDLTest_AssertCheck(stream == NULL, "Verify stream value; expected: NULL, got: %p", (void *)stream);
error = SDL_GetError();
SDLTest_AssertPass("Call to SDL_GetError()");
SDLTest_AssertCheck(error != NULL && error[0] != '\0', "Validate that error message was not NULL or empty");
SDL_DestroyAudioStream(stream);
}
SDL_ClearError();
SDLTest_AssertPass("Call to SDL_ClearError()");
return TEST_COMPLETED;
}
/**
* Checks current audio status.
*
* \sa SDL_GetAudioDeviceStatus
*/
static int audio_getAudioStatus(void *arg)
{
return TEST_COMPLETED; /* no longer a thing in SDL3. */
}
/**
* Opens, checks current audio status, and closes a device.
*
* \sa SDL_GetAudioStatus
*/
static int audio_openCloseAndGetAudioStatus(void *arg)
{
return TEST_COMPLETED; /* not a thing in SDL3. */
}
/**
* Locks and unlocks open audio device.
*
* \sa SDL_LockAudioDevice
* \sa SDL_UnlockAudioDevice
*/
static int audio_lockUnlockOpenAudioDevice(void *arg)
{
return TEST_COMPLETED; /* not a thing in SDL3 */
}
/**
* Convert audio using various conversion structures
*
* \sa SDL_CreateAudioStream
*/
static int audio_convertAudio(void *arg)
{
SDL_AudioStream *stream;
SDL_AudioSpec spec1;
SDL_AudioSpec spec2;
int c;
char message[128];
int i, ii, j, jj, k, kk;
SDL_zero(spec1);
SDL_zero(spec2);
/* Iterate over bitmask that determines which parameters are modified in the conversion */
for (c = 1; c < 8; c++) {
SDL_strlcpy(message, "Changing:", 128);
if (c & 1) {
SDL_strlcat(message, " Format", 128);
}
if (c & 2) {
SDL_strlcat(message, " Channels", 128);
}
if (c & 4) {
SDL_strlcat(message, " Frequencies", 128);
}
SDLTest_Log("%s", message);
/* All source conversions with random conversion targets */
for (i = 0; i < g_numAudioFormats; i++) {
for (j = 0; j < g_numAudioChannels; j++) {
for (k = 0; k < g_numAudioFrequencies; k++) {
spec1.format = g_audioFormats[i];
spec1.channels = g_audioChannels[j];
spec1.freq = g_audioFrequencies[k];
/* Ensure we have a different target format */
do {
if (c & 1) {
ii = SDLTest_RandomIntegerInRange(0, g_numAudioFormats - 1);
} else {
ii = 1;
}
if (c & 2) {
jj = SDLTest_RandomIntegerInRange(0, g_numAudioChannels - 1);
} else {
jj = j;
}
if (c & 4) {
kk = SDLTest_RandomIntegerInRange(0, g_numAudioFrequencies - 1);
} else {
kk = k;
}
} while ((i == ii) && (j == jj) && (k == kk));
spec2.format = g_audioFormats[ii];
spec2.channels = g_audioChannels[jj];
spec2.freq = g_audioFrequencies[kk];
stream = SDL_CreateAudioStream(&spec1, &spec2);
SDLTest_AssertPass("Call to SDL_CreateAudioStream(format[%i]=%s(%i),channels[%i]=%i,freq[%i]=%i ==> format[%i]=%s(%i),channels[%i]=%i,freq[%i]=%i)",
i, g_audioFormatsVerbose[i], spec1.format, j, spec1.channels, k, spec1.freq, ii, g_audioFormatsVerbose[ii], spec2.format, jj, spec2.channels, kk, spec2.freq);
SDLTest_AssertCheck(stream != NULL, "Verify stream value; expected: != NULL, got: %p", (void *)stream);
if (stream == NULL) {
SDLTest_LogError("%s", SDL_GetError());
} else {
Uint8 *dst_buf = NULL, *src_buf = NULL;
int dst_len = 0, src_len = 0, real_dst_len = 0;
int l = 64, m;
int src_framesize, dst_framesize;
int src_silence, dst_silence;
src_framesize = SDL_AUDIO_FRAMESIZE(spec1);
dst_framesize = SDL_AUDIO_FRAMESIZE(spec2);
src_len = l * src_framesize;
SDLTest_Log("Creating dummy sample buffer of %i length (%i bytes)", l, src_len);
src_buf = (Uint8 *)SDL_malloc(src_len);
SDLTest_AssertCheck(src_buf != NULL, "Check src data buffer to convert is not NULL");
if (src_buf == NULL) {
return TEST_ABORTED;
}
src_silence = SDL_GetSilenceValueForFormat(spec1.format);
SDL_memset(src_buf, src_silence, src_len);
dst_len = ((int)((((Sint64)l * spec2.freq) - 1) / spec1.freq) + 1) * dst_framesize;
dst_buf = (Uint8 *)SDL_malloc(dst_len);
SDLTest_AssertCheck(dst_buf != NULL, "Check dst data buffer to convert is not NULL");
if (dst_buf == NULL) {
return TEST_ABORTED;
}
real_dst_len = SDL_GetAudioStreamAvailable(stream);
SDLTest_AssertCheck(0 == real_dst_len, "Verify available (pre-put); expected: %i; got: %i", 0, real_dst_len);
/* Run the audio converter */
if (SDL_PutAudioStreamData(stream, src_buf, src_len) < 0 ||
SDL_FlushAudioStream(stream) < 0) {
return TEST_ABORTED;
}
real_dst_len = SDL_GetAudioStreamAvailable(stream);
SDLTest_AssertCheck(dst_len == real_dst_len, "Verify available (post-put); expected: %i; got: %i", dst_len, real_dst_len);
real_dst_len = SDL_GetAudioStreamData(stream, dst_buf, dst_len);
SDLTest_AssertCheck(dst_len == real_dst_len, "Verify result value; expected: %i; got: %i", dst_len, real_dst_len);
if (dst_len != real_dst_len) {
return TEST_ABORTED;
}
real_dst_len = SDL_GetAudioStreamAvailable(stream);
SDLTest_AssertCheck(0 == real_dst_len, "Verify available (post-get); expected: %i; got: %i", 0, real_dst_len);
dst_silence = SDL_GetSilenceValueForFormat(spec2.format);
for (m = 0; m < dst_len; ++m) {
if (dst_buf[m] != dst_silence) {
SDLTest_LogError("Output buffer is not silent");
return TEST_ABORTED;
}
}
SDL_DestroyAudioStream(stream);
/* Free converted buffer */
SDL_free(src_buf);
SDL_free(dst_buf);
}
}
}
}
}
return TEST_COMPLETED;
}
/**
* Opens, checks current connected status, and closes a device.
*
* \sa SDL_AudioDeviceConnected
*/
static int audio_openCloseAudioDeviceConnected(void *arg)
{
return TEST_COMPLETED; /* not a thing in SDL3. */
}
static double sine_wave_sample(const Sint64 idx, const Sint64 rate, const Sint64 freq, const double phase)
{
/* Using integer modulo to avoid precision loss caused by large floating
* point numbers. Sint64 is needed for the large integer multiplication.
* The integers are assumed to be non-negative so that modulo is always
* non-negative.
* sin(i / rate * freq * 2 * PI + phase)
* = sin(mod(i / rate * freq, 1) * 2 * PI + phase)
* = sin(mod(i * freq, rate) / rate * 2 * PI + phase) */
return SDL_sin(((double)(idx * freq % rate)) / ((double)rate) * (SDL_PI_D * 2) + phase);
}
/* Split the data into randomly sized chunks */
static int put_audio_data_split(SDL_AudioStream* stream, const void* buf, int len)
{
SDL_AudioSpec spec;
int frame_size;
int ret = SDL_GetAudioStreamFormat(stream, &spec, NULL);
if (ret != 0) {
return ret;
}
frame_size = SDL_AUDIO_FRAMESIZE(spec);
while (len > 0) {
int n = SDLTest_RandomIntegerInRange(1, 10000) * frame_size;
n = SDL_min(n, len);
ret = SDL_PutAudioStreamData(stream, buf, n);
if (ret != 0) {
return ret;
}
buf = ((const Uint8*) buf) + n;
len -= n;
}
return 0;
}
/* Read the data in randomly sized chunks */
static int get_audio_data_split(SDL_AudioStream* stream, void* buf, int len) {
SDL_AudioSpec spec;
int frame_size;
int ret = SDL_GetAudioStreamFormat(stream, NULL, &spec);
int total = 0;
if (ret != 0) {
return ret;
}
frame_size = SDL_AUDIO_FRAMESIZE(spec);
while (len > 0) {
int n = SDLTest_RandomIntegerInRange(1, 10000) * frame_size;
n = SDL_min(n, len);
ret = SDL_GetAudioStreamData(stream, buf, n);
if (ret <= 0) {
return total ? total : ret;
}
buf = ((Uint8*) buf) + ret;
total += ret;
len -= ret;
}
return total;
}
/* Convert the data in chunks, putting/getting randomly sized chunks until finished */
static int convert_audio_chunks(SDL_AudioStream* stream, const void* src, int srclen, void* dst, int dstlen)
{
SDL_AudioSpec src_spec, dst_spec;
int src_frame_size, dst_frame_size;
int total_in = 0, total_out = 0;
int ret = SDL_GetAudioStreamFormat(stream, &src_spec, &dst_spec);
if (ret) {
return ret;
}
src_frame_size = SDL_AUDIO_FRAMESIZE(src_spec);
dst_frame_size = SDL_AUDIO_FRAMESIZE(dst_spec);
while ((total_in < srclen) || (total_out < dstlen)) {
int to_put = SDLTest_RandomIntegerInRange(1, 40000) * src_frame_size;
int to_get = SDLTest_RandomIntegerInRange(1, (int)((40000.0f * dst_spec.freq) / src_spec.freq)) * dst_frame_size;
to_put = SDL_min(to_put, srclen - total_in);
to_get = SDL_min(to_get, dstlen - total_out);
if (to_put)
{
ret = put_audio_data_split(stream, (const Uint8*)(src) + total_in, to_put);
if (ret) {
return total_out ? total_out : ret;
}
total_in += to_put;
if (total_in == srclen) {
ret = SDL_FlushAudioStream(stream);
if (ret) {
return total_out ? total_out : ret;
}
}
}
if (to_get)
{
ret = get_audio_data_split(stream, (Uint8*)(dst) + total_out, to_get);
if ((ret == 0) && (total_in == srclen)) {
ret = -1;
}
if (ret < 0) {
return total_out ? total_out : ret;
}
total_out += ret;
}
}
return total_out;
}
/**
* Check signal-to-noise ratio and maximum error of audio resampling.
*
* \sa https://wiki.libsdl.org/SDL_CreateAudioStream
* \sa https://wiki.libsdl.org/SDL_DestroyAudioStream
* \sa https://wiki.libsdl.org/SDL_PutAudioStreamData
* \sa https://wiki.libsdl.org/SDL_FlushAudioStream
* \sa https://wiki.libsdl.org/SDL_GetAudioStreamData
*/
static int audio_resampleLoss(void *arg)
{
/* Note: always test long input time (>= 5s from experience) in some test
* cases because an improper implementation may suffer from low resampling
* precision with long input due to e.g. doing subtraction with large floats. */
struct test_spec_t {
int time;
int freq;
double phase;
int rate_in;
int rate_out;
double signal_to_noise;
double max_error;
} test_specs[] = {
{ 50, 440, 0, 44100, 48000, 80, 0.0010 },
{ 50, 5000, SDL_PI_D / 2, 20000, 10000, 999, 0.0001 },
{ 50, 440, 0, 22050, 96000, 79, 0.0120 },
{ 50, 440, 0, 96000, 22050, 80, 0.0002 },
{ 0 }
};
int spec_idx = 0;
int min_channels = 1;
int max_channels = 1 /*8*/;
int num_channels = min_channels;
for (spec_idx = 0; test_specs[spec_idx].time > 0;) {
const struct test_spec_t *spec = &test_specs[spec_idx];
const int frames_in = spec->time * spec->rate_in;
const int frames_target = spec->time * spec->rate_out;
const int len_in = (frames_in * num_channels) * (int)sizeof(float);
const int len_target = (frames_target * num_channels) * (int)sizeof(float);
SDL_AudioSpec tmpspec1, tmpspec2;
Uint64 tick_beg = 0;
Uint64 tick_end = 0;
int i = 0;
int j = 0;
SDL_AudioStream *stream = NULL;
float *buf_in = NULL;
float *buf_out = NULL;
int len_out = 0;
double max_error = 0;
double sum_squared_error = 0;
double sum_squared_value = 0;
double signal_to_noise = 0;
SDL_zero(tmpspec1);
SDL_zero(tmpspec2);
SDLTest_AssertPass("Test resampling of %i s %i Hz %f phase sine wave from sampling rate of %i Hz to %i Hz",
spec->time, spec->freq, spec->phase, spec->rate_in, spec->rate_out);
tmpspec1.format = SDL_AUDIO_F32;
tmpspec1.channels = num_channels;
tmpspec1.freq = spec->rate_in;
tmpspec2.format = SDL_AUDIO_F32;
tmpspec2.channels = num_channels;
tmpspec2.freq = spec->rate_out;
stream = SDL_CreateAudioStream(&tmpspec1, &tmpspec2);
SDLTest_AssertPass("Call to SDL_CreateAudioStream(SDL_AUDIO_F32, %i, %i, SDL_AUDIO_F32, %i, %i)", num_channels, spec->rate_in, num_channels, spec->rate_out);
SDLTest_AssertCheck(stream != NULL, "Expected SDL_CreateAudioStream to succeed.");
if (stream == NULL) {
return TEST_ABORTED;
}
buf_in = (float *)SDL_malloc(len_in);
SDLTest_AssertCheck(buf_in != NULL, "Expected input buffer to be created.");
if (buf_in == NULL) {
SDL_DestroyAudioStream(stream);
return TEST_ABORTED;
}
for (i = 0; i < frames_in; ++i) {
float f = (float)sine_wave_sample(i, spec->rate_in, spec->freq, spec->phase);
for (j = 0; j < num_channels; ++j) {
*(buf_in + (i * num_channels) + j) = f;
}
}
tick_beg = SDL_GetPerformanceCounter();
buf_out = (float *)SDL_malloc(len_target);
SDLTest_AssertCheck(buf_out != NULL, "Expected output buffer to be created.");
if (buf_out == NULL) {
SDL_DestroyAudioStream(stream);
return TEST_ABORTED;
}
len_out = convert_audio_chunks(stream, buf_in, len_in, buf_out, len_target);
SDLTest_AssertPass("Call to convert_audio_chunks(stream, buf_in, %i, buf_out, %i)", len_in, len_target);
SDLTest_AssertCheck(len_out == len_target, "Expected output length to be %i, got %i.",
len_target, len_out);
SDL_free(buf_in);
if (len_out != len_target) {
SDL_DestroyAudioStream(stream);
return TEST_ABORTED;
}
tick_end = SDL_GetPerformanceCounter();
SDLTest_Log("Resampling used %f seconds.", ((double)(tick_end - tick_beg)) / SDL_GetPerformanceFrequency());
for (i = 0; i < frames_target; ++i) {
const double target = sine_wave_sample(i, spec->rate_out, spec->freq, spec->phase);
for (j = 0; j < num_channels; ++j) {
const float output = *(buf_out + (i * num_channels) + j);
const double error = SDL_fabs(target - output);
max_error = SDL_max(max_error, error);
sum_squared_error += error * error;
sum_squared_value += target * target;
}
}
SDL_free(buf_out);
signal_to_noise = 10 * SDL_log10(sum_squared_value / sum_squared_error); /* decibel */
SDLTest_AssertCheck(ISFINITE(sum_squared_value), "Sum of squared target should be finite.");
SDLTest_AssertCheck(ISFINITE(sum_squared_error), "Sum of squared error should be finite.");
/* Infinity is theoretically possible when there is very little to no noise */
SDLTest_AssertCheck(!ISNAN(signal_to_noise), "Signal-to-noise ratio should not be NaN.");
SDLTest_AssertCheck(ISFINITE(max_error), "Maximum conversion error should be finite.");
SDLTest_AssertCheck(signal_to_noise >= spec->signal_to_noise, "Conversion signal-to-noise ratio %f dB should be no less than %f dB.",
signal_to_noise, spec->signal_to_noise);
SDLTest_AssertCheck(max_error <= spec->max_error, "Maximum conversion error %f should be no more than %f.",
max_error, spec->max_error);
if (++num_channels > max_channels) {
num_channels = min_channels;
++spec_idx;
}
}
return TEST_COMPLETED;
}
/**
* Check accuracy converting between audio formats.
*
* \sa SDL_ConvertAudioSamples
*/
static int audio_convertAccuracy(void *arg)
{
static SDL_AudioFormat formats[] = { SDL_AUDIO_S8, SDL_AUDIO_U8, SDL_AUDIO_S16, SDL_AUDIO_S32 };
static const char* format_names[] = { "S8", "U8", "S16", "S32" };
int src_num = 65537 + 2048 + 48 + 256 + 100000;
int src_len = src_num * sizeof(float);
float* src_data = SDL_malloc(src_len);
int i, j;
SDLTest_AssertCheck(src_data != NULL, "Expected source buffer to be created.");
if (src_data == NULL) {
return TEST_ABORTED;
}
j = 0;
/* Generate a uniform range of floats between [-1.0, 1.0] */
for (i = 0; i < 65537; ++i) {
src_data[j++] = ((float)i - 32768.0f) / 32768.0f;
}
/* Generate floats close to 1.0 */
const float max_val = 16777216.0f;
for (i = 0; i < 1024; ++i) {
float f = (max_val + (float)(512 - i)) / max_val;
src_data[j++] = f;
src_data[j++] = -f;
}
for (i = 0; i < 24; ++i) {
float f = (max_val + (float)(3u << i)) / max_val;
src_data[j++] = f;
src_data[j++] = -f;
}
/* Generate floats far outside the [-1.0, 1.0] range */
for (i = 0; i < 128; ++i) {
float f = 2.0f + (float) i;
src_data[j++] = f;
src_data[j++] = -f;
}
/* Fill the rest with random floats between [-1.0, 1.0] */
for (i = 0; i < 100000; ++i) {
src_data[j++] = SDLTest_RandomSint32() / 2147483648.0f;
}
/* Shuffle the data for good measure */
for (i = src_num - 1; i > 0; --i) {
float f = src_data[i];
j = SDLTest_RandomIntegerInRange(0, i);
src_data[i] = src_data[j];
src_data[j] = f;
}
for (i = 0; i < SDL_arraysize(formats); ++i) {
SDL_AudioSpec src_spec, tmp_spec;
Uint64 convert_begin, convert_end;
Uint8 *tmp_data, *dst_data;
int tmp_len, dst_len;
int ret;
SDL_zero(src_spec);
SDL_zero(tmp_spec);
SDL_AudioFormat format = formats[i];
const char* format_name = format_names[i];
/* Formats with > 23 bits can represent every value exactly */
float min_delta = 1.0f;
float max_delta = -1.0f;
/* Subtract 1 bit to account for sign */
int bits = SDL_AUDIO_BITSIZE(format) - 1;
float target_max_delta = (bits > 23) ? 0.0f : (1.0f / (float)(1 << bits));
float target_min_delta = -target_max_delta;
src_spec.format = SDL_AUDIO_F32;
src_spec.channels = 1;
src_spec.freq = 44100;
tmp_spec.format = format;
tmp_spec.channels = 1;
tmp_spec.freq = 44100;
convert_begin = SDL_GetPerformanceCounter();
tmp_data = NULL;
tmp_len = 0;
ret = SDL_ConvertAudioSamples(&src_spec, (const Uint8*) src_data, src_len, &tmp_spec, &tmp_data, &tmp_len);
SDLTest_AssertCheck(ret == 0, "Expected SDL_ConvertAudioSamples(F32->%s) to succeed", format_name);
if (ret != 0) {
SDL_free(src_data);
return TEST_ABORTED;
}
dst_data = NULL;
dst_len = 0;
ret = SDL_ConvertAudioSamples(&tmp_spec, tmp_data, tmp_len, &src_spec, &dst_data, &dst_len);
SDLTest_AssertCheck(ret == 0, "Expected SDL_ConvertAudioSamples(%s->F32) to succeed", format_name);
if (ret != 0) {
SDL_free(tmp_data);
SDL_free(src_data);
return TEST_ABORTED;
}
convert_end = SDL_GetPerformanceCounter();
SDLTest_Log("Conversion via %s took %f seconds.", format_name, ((double)(convert_end - convert_begin)) / SDL_GetPerformanceFrequency());
SDL_free(tmp_data);
for (j = 0; j < src_num; ++j) {
float x = src_data[j];
float y = ((float*)dst_data)[j];
float d = SDL_clamp(x, -1.0f, 1.0f) - y;
min_delta = SDL_min(min_delta, d);
max_delta = SDL_max(max_delta, d);
}
SDLTest_AssertCheck(min_delta >= target_min_delta, "%s has min delta of %+f, should be >= %+f", format_name, min_delta, target_min_delta);
SDLTest_AssertCheck(max_delta <= target_max_delta, "%s has max delta of %+f, should be <= %+f", format_name, max_delta, target_max_delta);
SDL_free(dst_data);
}
SDL_free(src_data);
return TEST_COMPLETED;
}
/**
* Check accuracy when switching between formats
*
* \sa SDL_SetAudioStreamFormat
*/
static int audio_formatChange(void *arg)
{
int i;
SDL_AudioSpec spec1, spec2, spec3;
int frames_1, frames_2, frames_3;
int length_1, length_2, length_3;
int retval = 0;
int status = TEST_ABORTED;
float* buffer_1 = NULL;
float* buffer_2 = NULL;
float* buffer_3 = NULL;
SDL_AudioStream* stream = NULL;
double max_error = 0;
double sum_squared_error = 0;
double sum_squared_value = 0;
double signal_to_noise = 0;
double target_max_error = 0.02;
double target_signal_to_noise = 75.0;
int sine_freq = 500;
SDL_zero(spec1);
SDL_zero(spec2);
SDL_zero(spec3);
spec1.format = SDL_AUDIO_F32;
spec1.channels = 1;
spec1.freq = 20000;
spec2.format = SDL_AUDIO_F32;
spec2.channels = 1;
spec2.freq = 40000;
spec3.format = SDL_AUDIO_F32;
spec3.channels = 1;
spec3.freq = 80000;
frames_1 = spec1.freq;
frames_2 = spec2.freq;
frames_3 = spec3.freq * 2;
length_1 = (int)(frames_1 * sizeof(*buffer_1));
buffer_1 = (float*) SDL_malloc(length_1);
if (!SDLTest_AssertCheck(buffer_1 != NULL, "Expected buffer_1 to be created.")) {
goto cleanup;
}
length_2 = (int)(frames_2 * sizeof(*buffer_2));
buffer_2 = (float*) SDL_malloc(length_2);
if (!SDLTest_AssertCheck(buffer_2 != NULL, "Expected buffer_2 to be created.")) {
goto cleanup;
}
length_3 = (int)(frames_3 * sizeof(*buffer_3));
buffer_3 = (float*) SDL_malloc(length_3);
if (!SDLTest_AssertCheck(buffer_3 != NULL, "Expected buffer_3 to be created.")) {
goto cleanup;
}
for (i = 0; i < frames_1; ++i) {
buffer_1[i] = (float) sine_wave_sample(i, spec1.freq, sine_freq, 0.0f);
}
for (i = 0; i < frames_2; ++i) {
buffer_2[i] = (float) sine_wave_sample(i, spec2.freq, sine_freq, 0.0f);
}
stream = SDL_CreateAudioStream(NULL, NULL);
if (!SDLTest_AssertCheck(stream != NULL, "Expected SDL_CreateAudioStream to succeed")) {
goto cleanup;
}
retval = SDL_SetAudioStreamFormat(stream, &spec1, &spec3);
if (!SDLTest_AssertCheck(retval == 0, "Expected SDL_SetAudioStreamFormat(spec1, spec3) to succeed")) {
goto cleanup;
}
retval = SDL_GetAudioStreamAvailable(stream);
if (!SDLTest_AssertCheck(retval == 0, "Expected SDL_GetAudioStreamAvailable return 0")) {
goto cleanup;
}
retval = SDL_PutAudioStreamData(stream, buffer_1, length_1);
if (!SDLTest_AssertCheck(retval == 0, "Expected SDL_PutAudioStreamData(buffer_1) to succeed")) {
goto cleanup;
}
retval = SDL_FlushAudioStream(stream);
if (!SDLTest_AssertCheck(retval == 0, "Expected SDL_FlushAudioStream to succeed")) {
goto cleanup;
}
retval = SDL_SetAudioStreamFormat(stream, &spec2, &spec3);
if (!SDLTest_AssertCheck(retval == 0, "Expected SDL_SetAudioStreamFormat(spec2, spec3) to succeed")) {
goto cleanup;
}
retval = SDL_PutAudioStreamData(stream, buffer_2, length_2);
if (!SDLTest_AssertCheck(retval == 0, "Expected SDL_PutAudioStreamData(buffer_1) to succeed")) {
goto cleanup;
}
retval = SDL_FlushAudioStream(stream);
if (!SDLTest_AssertCheck(retval == 0, "Expected SDL_FlushAudioStream to succeed")) {
goto cleanup;
}
retval = SDL_GetAudioStreamAvailable(stream);
if (!SDLTest_AssertCheck(retval == length_3, "Expected SDL_GetAudioStreamAvailable to return %i, got %i", length_3, retval)) {
goto cleanup;
}
retval = SDL_GetAudioStreamData(stream, buffer_3, length_3);
if (!SDLTest_AssertCheck(retval == length_3, "Expected SDL_GetAudioStreamData to return %i, got %i", length_3, retval)) {
goto cleanup;
}
retval = SDL_GetAudioStreamAvailable(stream);
if (!SDLTest_AssertCheck(retval == 0, "Expected SDL_GetAudioStreamAvailable to return 0")) {
goto cleanup;
}
for (i = 0; i < frames_3; ++i) {
const float output = buffer_3[i];
const float target = (float) sine_wave_sample(i, spec3.freq, sine_freq, 0.0f);
const double error = SDL_fabs(target - output);
max_error = SDL_max(max_error, error);
sum_squared_error += error * error;
sum_squared_value += target * target;
}
signal_to_noise = 10 * SDL_log10(sum_squared_value / sum_squared_error); /* decibel */
SDLTest_AssertCheck(ISFINITE(sum_squared_value), "Sum of squared target should be finite.");
SDLTest_AssertCheck(ISFINITE(sum_squared_error), "Sum of squared error should be finite.");
/* Infinity is theoretically possible when there is very little to no noise */
SDLTest_AssertCheck(!ISNAN(signal_to_noise), "Signal-to-noise ratio should not be NaN.");
SDLTest_AssertCheck(ISFINITE(max_error), "Maximum conversion error should be finite.");
SDLTest_AssertCheck(signal_to_noise >= target_signal_to_noise, "Conversion signal-to-noise ratio %f dB should be no less than %f dB.",
signal_to_noise, target_signal_to_noise);
SDLTest_AssertCheck(max_error <= target_max_error, "Maximum conversion error %f should be no more than %f.",
max_error, target_max_error);
status = TEST_COMPLETED;
cleanup:
SDL_free(buffer_1);
SDL_free(buffer_2);
SDL_free(buffer_3);
SDL_DestroyAudioStream(stream);
return status;
}
/* ================= Test Case References ================== */
/* Audio test cases */
static const SDLTest_TestCaseReference audioTest1 = {
audio_enumerateAndNameAudioDevices, "audio_enumerateAndNameAudioDevices", "Enumerate and name available audio devices (playback and recording)", TEST_ENABLED
};
static const SDLTest_TestCaseReference audioTest2 = {
audio_enumerateAndNameAudioDevicesNegativeTests, "audio_enumerateAndNameAudioDevicesNegativeTests", "Negative tests around enumeration and naming of audio devices.", TEST_ENABLED
};
static const SDLTest_TestCaseReference audioTest3 = {
audio_printAudioDrivers, "audio_printAudioDrivers", "Checks available audio driver names.", TEST_ENABLED
};
static const SDLTest_TestCaseReference audioTest4 = {
audio_printCurrentAudioDriver, "audio_printCurrentAudioDriver", "Checks current audio driver name with initialized audio.", TEST_ENABLED
};
static const SDLTest_TestCaseReference audioTest5 = {
audio_buildAudioStream, "audio_buildAudioStream", "Builds various audio conversion structures.", TEST_ENABLED
};
static const SDLTest_TestCaseReference audioTest6 = {
audio_buildAudioStreamNegative, "audio_buildAudioStreamNegative", "Checks calls with invalid input to SDL_CreateAudioStream", TEST_ENABLED
};
static const SDLTest_TestCaseReference audioTest7 = {
audio_getAudioStatus, "audio_getAudioStatus", "Checks current audio status.", TEST_ENABLED
};
static const SDLTest_TestCaseReference audioTest8 = {
audio_openCloseAndGetAudioStatus, "audio_openCloseAndGetAudioStatus", "Opens and closes audio device and get audio status.", TEST_ENABLED
};
static const SDLTest_TestCaseReference audioTest9 = {
audio_lockUnlockOpenAudioDevice, "audio_lockUnlockOpenAudioDevice", "Locks and unlocks an open audio device.", TEST_ENABLED
};
static const SDLTest_TestCaseReference audioTest10 = {
audio_convertAudio, "audio_convertAudio", "Convert audio using available formats.", TEST_ENABLED
};
/* TODO: enable test when SDL_AudioDeviceConnected has been implemented. */
static const SDLTest_TestCaseReference audioTest11 = {
audio_openCloseAudioDeviceConnected, "audio_openCloseAudioDeviceConnected", "Opens and closes audio device and get connected status.", TEST_DISABLED
};
static const SDLTest_TestCaseReference audioTest12 = {
audio_quitInitAudioSubSystem, "audio_quitInitAudioSubSystem", "Quit and re-init audio subsystem.", TEST_ENABLED
};
static const SDLTest_TestCaseReference audioTest13 = {
audio_initQuitAudio, "audio_initQuitAudio", "Init and quit audio drivers directly.", TEST_ENABLED
};
static const SDLTest_TestCaseReference audioTest14 = {
audio_initOpenCloseQuitAudio, "audio_initOpenCloseQuitAudio", "Cycle through init, open, close and quit with various audio specs.", TEST_ENABLED
};
static const SDLTest_TestCaseReference audioTest15 = {
audio_pauseUnpauseAudio, "audio_pauseUnpauseAudio", "Pause and Unpause audio for various audio specs while testing callback.", TEST_ENABLED
};
static const SDLTest_TestCaseReference audioTest16 = {
audio_resampleLoss, "audio_resampleLoss", "Check signal-to-noise ratio and maximum error of audio resampling.", TEST_ENABLED
};
static const SDLTest_TestCaseReference audioTest17 = {
audio_convertAccuracy, "audio_convertAccuracy", "Check accuracy converting between audio formats.", TEST_ENABLED
};
static const SDLTest_TestCaseReference audioTest18 = {
audio_formatChange, "audio_formatChange", "Check handling of format changes.", TEST_ENABLED
};
/* Sequence of Audio test cases */
static const SDLTest_TestCaseReference *audioTests[] = {
&audioTest1, &audioTest2, &audioTest3, &audioTest4, &audioTest5, &audioTest6,
&audioTest7, &audioTest8, &audioTest9, &audioTest10, &audioTest11,
&audioTest12, &audioTest13, &audioTest14, &audioTest15, &audioTest16,
&audioTest17, &audioTest18, NULL
};
/* Audio test suite (global) */
SDLTest_TestSuiteReference audioTestSuite = {
"Audio",
audioSetUp,
audioTests,
audioTearDown
};