1
1
Fork 0
forked from eden-emu/eden

Compare commits

...
Sign in to create a new pull request.

6 commits
master ... msaa

Author SHA1 Message Date
546dcd5aef Sorry ; 2025-05-17 07:37:45 +00:00
d3510b1397 Try fix RAII crash problems 2025-05-17 04:26:34 -03:00
d09899722d Use clear method to use clear free memory 2025-05-17 03:30:41 -03:00
0929bfc156 try fix invalid chunk state when deallocating
Enhance memory safety: add null/zero-length checks and pointer resets, improve validation for memory mapping and cleanup on destruction
2025-05-17 03:30:41 -03:00
1ffa98a40d some MSAA fixes 2025-05-13 06:03:10 -03:00
38d18af8ba Initial MSAA fix 2025-05-13 06:03:10 -03:00
6 changed files with 314 additions and 120 deletions

View file

@ -13,11 +13,21 @@ public:
explicit FreeRegionManager() = default; explicit FreeRegionManager() = default;
~FreeRegionManager() = default; ~FreeRegionManager() = default;
// Clear all free regions
void Clear() {
std::scoped_lock lk(m_mutex);
m_free_regions.clear();
}
void SetAddressSpace(void* start, size_t size) { void SetAddressSpace(void* start, size_t size) {
this->FreeBlock(start, size); this->FreeBlock(start, size);
} }
std::pair<void*, size_t> FreeBlock(void* block_ptr, size_t size) { std::pair<void*, size_t> FreeBlock(void* block_ptr, size_t size) {
if (block_ptr == nullptr || size == 0) {
return {nullptr, 0};
}
std::scoped_lock lk(m_mutex); std::scoped_lock lk(m_mutex);
// Check to see if we are adjacent to any regions. // Check to see if we are adjacent to any regions.
@ -41,6 +51,11 @@ public:
} }
void AllocateBlock(void* block_ptr, size_t size) { void AllocateBlock(void* block_ptr, size_t size) {
// Skip if pointer is null or size is zero
if (block_ptr == nullptr || size == 0) {
return;
}
std::scoped_lock lk(m_mutex); std::scoped_lock lk(m_mutex);
auto address = reinterpret_cast<uintptr_t>(block_ptr); auto address = reinterpret_cast<uintptr_t>(block_ptr);

View file

@ -491,6 +491,12 @@ public:
// Intersect the range with our address space. // Intersect the range with our address space.
AdjustMap(&virtual_offset, &length); AdjustMap(&virtual_offset, &length);
// Skip if length is zero after adjustment
if (length == 0) {
LOG_DEBUG(HW_Memory, "Skipping zero-length mapping at virtual_offset={}", virtual_offset);
return;
}
// We are removing a placeholder. // We are removing a placeholder.
free_manager.AllocateBlock(virtual_base + virtual_offset, length); free_manager.AllocateBlock(virtual_base + virtual_offset, length);
@ -520,14 +526,22 @@ public:
// Intersect the range with our address space. // Intersect the range with our address space.
AdjustMap(&virtual_offset, &length); AdjustMap(&virtual_offset, &length);
// Skip if length is zero after adjustment
if (length == 0) {
return;
}
// Merge with any adjacent placeholder mappings. // Merge with any adjacent placeholder mappings.
auto [merged_pointer, merged_size] = auto [merged_pointer, merged_size] =
free_manager.FreeBlock(virtual_base + virtual_offset, length); free_manager.FreeBlock(virtual_base + virtual_offset, length);
// Only attempt to mmap if we have a valid pointer and size
if (merged_pointer != nullptr && merged_size > 0) {
void* ret = mmap(merged_pointer, merged_size, PROT_NONE, void* ret = mmap(merged_pointer, merged_size, PROT_NONE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, -1, 0); MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
ASSERT_MSG(ret != MAP_FAILED, "mmap failed: {}", strerror(errno)); ASSERT_MSG(ret != MAP_FAILED, "mmap failed: {}", strerror(errno));
} }
}
void Protect(size_t virtual_offset, size_t length, bool read, bool write, bool execute) { void Protect(size_t virtual_offset, size_t length, bool read, bool write, bool execute) {
// Intersect the range with our address space. // Intersect the range with our address space.
@ -576,19 +590,26 @@ public:
private: private:
/// Release all resources in the object /// Release all resources in the object
void Release() { void Release() {
// Make sure we release resources in the correct order
// First clear the free region manager to avoid any dangling references
free_manager.Clear();
if (virtual_map_base != MAP_FAILED) { if (virtual_map_base != MAP_FAILED) {
int ret = munmap(virtual_map_base, virtual_size); int ret = munmap(virtual_map_base, virtual_size);
ASSERT_MSG(ret == 0, "munmap failed: {}", strerror(errno)); ASSERT_MSG(ret == 0, "munmap failed: {}", strerror(errno));
virtual_map_base = reinterpret_cast<u8*>(MAP_FAILED);
} }
if (backing_base != MAP_FAILED) { if (backing_base != MAP_FAILED) {
int ret = munmap(backing_base, backing_size); int ret = munmap(backing_base, backing_size);
ASSERT_MSG(ret == 0, "munmap failed: {}", strerror(errno)); ASSERT_MSG(ret == 0, "munmap failed: {}", strerror(errno));
backing_base = reinterpret_cast<u8*>(MAP_FAILED);
} }
if (fd != -1) { if (fd != -1) {
int ret = close(fd); int ret = close(fd);
ASSERT_MSG(ret == 0, "close failed: {}", strerror(errno)); ASSERT_MSG(ret == 0, "close failed: {}", strerror(errno));
fd = -1;
} }
} }
@ -686,8 +707,10 @@ void HostMemory::Map(size_t virtual_offset, size_t host_offset, size_t length,
ASSERT(virtual_offset + length <= virtual_size); ASSERT(virtual_offset + length <= virtual_size);
ASSERT(host_offset + length <= backing_size); ASSERT(host_offset + length <= backing_size);
if (length == 0 || !virtual_base || !impl) { if (length == 0 || !virtual_base || !impl) {
LOG_ERROR(HW_Memory, "Invalid mapping operation: virtual_base or impl is null");
return; return;
} }
LOG_INFO(HW_Memory, "Mapping memory: virtual_offset={}, host_offset={}, length={}", virtual_offset, host_offset, length);
impl->Map(virtual_offset + virtual_base_offset, host_offset, length, perms); impl->Map(virtual_offset + virtual_base_offset, host_offset, length, perms);
} }
@ -696,8 +719,10 @@ void HostMemory::Unmap(size_t virtual_offset, size_t length, bool separate_heap)
ASSERT(length % PageAlignment == 0); ASSERT(length % PageAlignment == 0);
ASSERT(virtual_offset + length <= virtual_size); ASSERT(virtual_offset + length <= virtual_size);
if (length == 0 || !virtual_base || !impl) { if (length == 0 || !virtual_base || !impl) {
LOG_ERROR(HW_Memory, "Invalid unmapping operation: virtual_base or impl is null");
return; return;
} }
LOG_INFO(HW_Memory, "Unmapping memory: virtual_offset={}, length={}", virtual_offset, length);
impl->Unmap(virtual_offset + virtual_base_offset, length); impl->Unmap(virtual_offset + virtual_base_offset, length);
} }

View file

@ -110,27 +110,16 @@ try
, device_memory(device_memory_) , device_memory(device_memory_)
, gpu(gpu_) , gpu(gpu_)
, library(OpenLibrary(context.get())) , library(OpenLibrary(context.get()))
, , dld()
// Create raw Vulkan instance first // Initialize resources in the same order as they are declared in the header
instance(CreateInstance(*library, , instance(CreateInstance(*library,
dld, dld,
VK_API_VERSION_1_1, VK_API_VERSION_1_1,
render_window.GetWindowInfo().type, render_window.GetWindowInfo().type,
Settings::values.renderer_debug.GetValue())) Settings::values.renderer_debug.GetValue()))
, , debug_messenger(Settings::values.renderer_debug ? CreateDebugUtilsCallback(instance)
// Now create RAII wrappers for the resources in the correct order
managed_instance(MakeManagedInstance(instance, dld))
,
// Create debug messenger if debug is enabled
debug_messenger(Settings::values.renderer_debug ? CreateDebugUtilsCallback(instance)
: vk::DebugUtilsMessenger{}) : vk::DebugUtilsMessenger{})
, managed_debug_messenger(Settings::values.renderer_debug , surface(CreateSurface(instance, render_window.GetWindowInfo()))
? MakeManagedDebugUtilsMessenger(debug_messenger, instance, dld)
: ManagedDebugUtilsMessenger{})
,
// Create surface
surface(CreateSurface(instance, render_window.GetWindowInfo()))
, managed_surface(MakeManagedSurface(surface, instance, dld))
, device(CreateDevice(instance, dld, *surface)) , device(CreateDevice(instance, dld, *surface))
, memory_allocator(device) , memory_allocator(device)
, state_tracker() , state_tracker()
@ -172,22 +161,19 @@ try
scheduler, scheduler,
PresentFiltersForAppletCapture) PresentFiltersForAppletCapture)
, rasterizer(render_window, gpu, device_memory, device, memory_allocator, state_tracker, scheduler) , rasterizer(render_window, gpu, device_memory, device, memory_allocator, state_tracker, scheduler)
, applet_frame() { , turbo_mode()
, applet_frame()
, managed_instance(MakeManagedInstance(instance, dld))
, managed_debug_messenger(Settings::values.renderer_debug
? MakeManagedDebugUtilsMessenger(debug_messenger, instance, dld)
: ManagedDebugUtilsMessenger{})
, managed_surface(MakeManagedSurface(surface, instance, dld)) {
if (Settings::values.renderer_force_max_clock.GetValue() && device.ShouldBoostClocks()) { if (Settings::values.renderer_force_max_clock.GetValue() && device.ShouldBoostClocks()) {
turbo_mode.emplace(instance, dld); turbo_mode.emplace(instance, dld);
scheduler.RegisterOnSubmit([this] { turbo_mode->QueueSubmitted(); }); scheduler.RegisterOnSubmit([this] { turbo_mode->QueueSubmitted(); });
} }
#ifndef ANDROID
// Release ownership from the old instance and surface
instance.release();
surface.release();
if (Settings::values.renderer_debug) {
debug_messenger.release();
}
#endif
Report(); Report();
} catch (const vk::Exception& exception) { } catch (const vk::Exception& exception) {
LOG_ERROR(Render_Vulkan, "Vulkan initialization failed with error: {}", exception.what()); LOG_ERROR(Render_Vulkan, "Vulkan initialization failed with error: {}", exception.what());

View file

@ -76,32 +76,37 @@ private:
std::shared_ptr<Common::DynamicLibrary> library; std::shared_ptr<Common::DynamicLibrary> library;
vk::InstanceDispatch dld; vk::InstanceDispatch dld;
// Keep original handles for compatibility with existing code // Order of member variables determines destruction order (reverse of declaration)
// Critical Vulkan resources should be declared in proper dependency order
// Base Vulkan instance, debugging, and surface
vk::Instance instance; vk::Instance instance;
// RAII wrapper for instance
ManagedInstance managed_instance;
vk::DebugUtilsMessenger debug_messenger; vk::DebugUtilsMessenger debug_messenger;
// RAII wrapper for debug messenger
ManagedDebugUtilsMessenger managed_debug_messenger;
vk::SurfaceKHR surface; vk::SurfaceKHR surface;
// RAII wrapper for surface
ManagedSurface managed_surface;
// Device and core resources
Device device; Device device;
MemoryAllocator memory_allocator; MemoryAllocator memory_allocator;
StateTracker state_tracker; StateTracker state_tracker;
Scheduler scheduler; Scheduler scheduler;
Swapchain swapchain; Swapchain swapchain;
PresentManager present_manager; PresentManager present_manager;
// Rendering components
BlitScreen blit_swapchain; BlitScreen blit_swapchain;
BlitScreen blit_capture; BlitScreen blit_capture;
BlitScreen blit_applet; BlitScreen blit_applet;
RasterizerVulkan rasterizer; RasterizerVulkan rasterizer;
std::optional<TurboMode> turbo_mode;
// Optional components
std::optional<TurboMode> turbo_mode;
Frame applet_frame; Frame applet_frame;
// RAII wrappers - must be destroyed before their raw handles
// so they are declared after to be destroyed first
ManagedInstance managed_instance;
ManagedDebugUtilsMessenger managed_debug_messenger;
ManagedSurface managed_surface;
}; };
} // namespace Vulkan } // namespace Vulkan

View file

@ -1529,6 +1529,58 @@ void Image::UploadMemory(VkBuffer buffer, VkDeviceSize offset,
if (is_rescaled) { if (is_rescaled) {
ScaleDown(true); ScaleDown(true);
} }
// Handle MSAA upload if necessary
if (info.num_samples > 1 && runtime->CanUploadMSAA()) {
// Only use MSAA copy pass for color formats
// Depth/stencil formats need special handling
if (aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT) {
// Create a temporary non-MSAA image to upload the data first
ImageInfo temp_info = info;
temp_info.num_samples = 1;
// Create image with same usage flags as the target image to avoid validation errors
VkImageCreateInfo image_ci = MakeImageCreateInfo(runtime->device, temp_info);
image_ci.usage = original_image.UsageFlags();
vk::Image temp_image = runtime->memory_allocator.CreateImage(image_ci);
// Upload to the temporary non-MSAA image
scheduler->RequestOutsideRenderPassOperationContext();
auto vk_copies = TransformBufferImageCopies(copies, offset, aspect_mask);
const VkBuffer src_buffer = buffer;
const VkImage temp_vk_image = *temp_image;
const VkImageAspectFlags vk_aspect_mask = aspect_mask;
scheduler->Record([src_buffer, temp_vk_image, vk_aspect_mask, vk_copies](vk::CommandBuffer cmdbuf) {
CopyBufferToImage(cmdbuf, src_buffer, temp_vk_image, vk_aspect_mask, false, vk_copies);
});
// Now use MSAACopyPass to convert from non-MSAA to MSAA
std::vector<VideoCommon::ImageCopy> image_copies;
for (const auto& copy : copies) {
VideoCommon::ImageCopy image_copy;
image_copy.src_offset = {0, 0, 0}; // Use zero offset for source
image_copy.dst_offset = copy.image_offset;
image_copy.src_subresource = copy.image_subresource;
image_copy.dst_subresource = copy.image_subresource;
image_copy.extent = copy.image_extent;
image_copies.push_back(image_copy);
}
// Create a wrapper Image for the temporary image
Image temp_wrapper(*runtime, temp_info, 0, 0);
temp_wrapper.original_image = std::move(temp_image);
temp_wrapper.current_image = &Image::original_image;
temp_wrapper.aspect_mask = aspect_mask;
temp_wrapper.initialized = true;
// Use MSAACopyPass to convert from non-MSAA to MSAA
runtime->msaa_copy_pass->CopyImage(*this, temp_wrapper, image_copies, false);
std::exchange(initialized, true);
return;
}
// For depth/stencil formats, fall back to regular upload
} else {
// Regular non-MSAA upload
scheduler->RequestOutsideRenderPassOperationContext(); scheduler->RequestOutsideRenderPassOperationContext();
auto vk_copies = TransformBufferImageCopies(copies, offset, aspect_mask); auto vk_copies = TransformBufferImageCopies(copies, offset, aspect_mask);
const VkBuffer src_buffer = buffer; const VkBuffer src_buffer = buffer;
@ -1539,6 +1591,8 @@ void Image::UploadMemory(VkBuffer buffer, VkDeviceSize offset,
vk_copies](vk::CommandBuffer cmdbuf) { vk_copies](vk::CommandBuffer cmdbuf) {
CopyBufferToImage(cmdbuf, src_buffer, vk_image, vk_aspect_mask, is_initialized, vk_copies); CopyBufferToImage(cmdbuf, src_buffer, vk_image, vk_aspect_mask, is_initialized, vk_copies);
}); });
}
if (is_rescaled) { if (is_rescaled) {
ScaleUp(); ScaleUp();
} }
@ -1565,6 +1619,114 @@ void Image::DownloadMemory(std::span<VkBuffer> buffers_span, std::span<size_t> o
if (is_rescaled) { if (is_rescaled) {
ScaleDown(); ScaleDown();
} }
// Handle MSAA download if necessary
if (info.num_samples > 1 && runtime->msaa_copy_pass) {
// Only use MSAA copy pass for color formats
// Depth/stencil formats need special handling
if (aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT) {
// Create a temporary non-MSAA image to download the data
ImageInfo temp_info = info;
temp_info.num_samples = 1;
// Create image with same usage flags as the target image to avoid validation errors
VkImageCreateInfo image_ci = MakeImageCreateInfo(runtime->device, temp_info);
image_ci.usage = original_image.UsageFlags();
vk::Image temp_image = runtime->memory_allocator.CreateImage(image_ci);
// Create a wrapper Image for the temporary image
Image temp_wrapper(*runtime, temp_info, 0, 0);
temp_wrapper.original_image = std::move(temp_image);
temp_wrapper.current_image = &Image::original_image;
temp_wrapper.aspect_mask = aspect_mask;
temp_wrapper.initialized = true;
// Convert from MSAA to non-MSAA using MSAACopyPass
std::vector<VideoCommon::ImageCopy> image_copies;
for (const auto& copy : copies) {
VideoCommon::ImageCopy image_copy;
image_copy.src_offset = copy.image_offset;
image_copy.dst_offset = copy.image_offset;
image_copy.src_subresource = copy.image_subresource;
image_copy.dst_subresource = copy.image_subresource;
image_copy.extent = copy.image_extent;
image_copies.push_back(image_copy);
}
// Use MSAACopyPass to convert from MSAA to non-MSAA
runtime->msaa_copy_pass->CopyImage(temp_wrapper, *this, image_copies, true);
// Now download from the non-MSAA image
boost::container::small_vector<VkBuffer, 8> buffers_vector{};
boost::container::small_vector<boost::container::small_vector<VkBufferImageCopy, 16>, 8>
vk_copies;
for (size_t index = 0; index < buffers_span.size(); index++) {
buffers_vector.emplace_back(buffers_span[index]);
vk_copies.emplace_back(
TransformBufferImageCopies(copies, offsets_span[index], aspect_mask));
}
scheduler->RequestOutsideRenderPassOperationContext();
scheduler->Record([buffers = std::move(buffers_vector), image = *temp_wrapper.original_image,
aspect_mask_ = aspect_mask, vk_copies](vk::CommandBuffer cmdbuf) {
const VkImageMemoryBarrier read_barrier{
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
.pNext = nullptr,
.srcAccessMask = VK_ACCESS_MEMORY_WRITE_BIT,
.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT,
.oldLayout = VK_IMAGE_LAYOUT_GENERAL,
.newLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.image = image,
.subresourceRange{
.aspectMask = aspect_mask_,
.baseMipLevel = 0,
.levelCount = VK_REMAINING_MIP_LEVELS,
.baseArrayLayer = 0,
.layerCount = VK_REMAINING_ARRAY_LAYERS,
},
};
cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT,
0, read_barrier);
for (size_t index = 0; index < buffers.size(); index++) {
cmdbuf.CopyImageToBuffer(image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, buffers[index],
vk_copies[index]);
}
const VkMemoryBarrier memory_write_barrier{
.sType = VK_STRUCTURE_TYPE_MEMORY_BARRIER,
.pNext = nullptr,
.srcAccessMask = VK_ACCESS_MEMORY_WRITE_BIT,
.dstAccessMask = VK_ACCESS_MEMORY_READ_BIT | VK_ACCESS_MEMORY_WRITE_BIT,
};
const VkImageMemoryBarrier image_write_barrier{
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
.pNext = nullptr,
.srcAccessMask = 0,
.dstAccessMask = VK_ACCESS_MEMORY_WRITE_BIT,
.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
.newLayout = VK_IMAGE_LAYOUT_GENERAL,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.image = image,
.subresourceRange{
.aspectMask = aspect_mask_,
.baseMipLevel = 0,
.levelCount = VK_REMAINING_MIP_LEVELS,
.baseArrayLayer = 0,
.layerCount = VK_REMAINING_ARRAY_LAYERS,
},
};
cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
0, memory_write_barrier, nullptr, image_write_barrier);
});
return;
}
// For depth/stencil formats, fall back to regular download
} else {
// Regular non-MSAA download
boost::container::small_vector<VkBuffer, 8> buffers_vector{}; boost::container::small_vector<VkBuffer, 8> buffers_vector{};
boost::container::small_vector<boost::container::small_vector<VkBufferImageCopy, 16>, 8> boost::container::small_vector<boost::container::small_vector<VkBufferImageCopy, 16>, 8>
vk_copies; vk_copies;
@ -1629,6 +1791,8 @@ void Image::DownloadMemory(std::span<VkBuffer> buffers_span, std::span<size_t> o
cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
0, memory_write_barrier, nullptr, image_write_barrier); 0, memory_write_barrier, nullptr, image_write_barrier);
}); });
}
if (is_rescaled) { if (is_rescaled) {
ScaleUp(true); ScaleUp(true);
} }

View file

@ -82,8 +82,7 @@ public:
} }
bool CanUploadMSAA() const noexcept { bool CanUploadMSAA() const noexcept {
// TODO: Implement buffer to MSAA uploads return msaa_copy_pass.operator bool();
return false;
} }
void AccelerateImageUpload(Image&, const StagingBufferRef&, void AccelerateImageUpload(Image&, const StagingBufferRef&,